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Abstract

A single server Markovian queuing system called the M/M/1 queuing system with two

distinct customer types namely; the constraint customer type and the un-constraint

customer type is studied. This model is that of a production system with heteroge-

neous customer structures devoid of a single customer in the intersection category

group wise. Initially, relevant literature covering methodologies, analysis and results

derived for single server production systems are reviewed and a gap identified. The

gap is that: The application of group theory in the analysis of queuing sys-

tems is scarce in the literature. This is against the backdrop that most

customers of service systems of transportation, telecommunications, com-

puter systems and other production centers exhibit certain group charac-

teristics. This gap motivated us to impose a group structure on customers of the

queuing system in question with the property that for the two subgroups considered

in this work, their intersection is null. Using the generating function approach, we

provided results on the stationary impact of one subgroup on the other. These re-

sults are fundamental basis for optimizing performance of sectors and sub-sectors of

production centers relative to their distributions and expectations generally.
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Chapter 1

Introduction

1.1 The Single Server Station:

In the queuing theory parlance, a single server station refers to the M/M/1 queuing

system. By the M/M/1 queuing system, we mean a service station where customers

arrive according to a Poisson process at a mean arrival rate say λ to receive service at

a mean service rate say µ on the single server in the system. It is a Markovian service

station with exponential inter-arrival and service time characteristics. The queue dis-

cipline in an M/M/1 queuing system may be the first come first served (FCFS) or the

last come first served (LCFS). If λ
µ
< 1; then the queuing system is stable. Otherwise,

it is considered unstable. The ratio λ
µ

is called the server utilization/occupation rate

of the server and is fundamental in defining a lot of performance measures such as

the waiting time or the queue length distribution of customers in the system.

Normally, a single server Markovian station may have finite or infinite waiting

space. Consequently, an M/M/1 queuing system where the available waiting space for

customers is finite is modeled as the M/M/1/K. On the other hand, if the available

waiting space is infinite, then the corresponding model is called an M/M/1/∞. The

model of a single server station that is the M/M/1 queuing model is memory-less

1
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because of its Markovian arrival and service characteristics. This property explains

that the probability distribution of arrivals and services in an M/M/1queuing system

are not influenced by history. Instead, the property of random variables related

to the future depends only on the present. The M/M/1 queuing model may be

discrete or continuous in time. That means the state of the M/M/1 queuing model

is either countable or uncountable in time. This information is contained in the

probability distribution of arrivals or services of the queuing model. Suppose X is a

random variable whose values are defined in a finite set say {0, 1, 2, ..., n}. Under this

condition, the probability distribution of X is discrete. Such a discrete probability

distribution is known to be geometric. On the other hand, if the values of X are

contained in the set [0,∞), then the probability distribution of X is continuous. A

good example of continuous distribution is the exponential distribution.

1.2 Robustness of the M/M/1 Queuing Model:

The M/M/1 queuing model is generally robust. This is evident in the numerous

analysis of the model under several descriptions in the literature. The analysis of

variables such as waiting time and queue length distributions in the M/M/1 queuing

system has been the focus of many studies and research to date. For instance, traffic

intensities of roads, communication channels and telecommunications routes are an-

alyzed with the use of the occupation rate parameter of the M/M/1 queuing model.

Similarly, traffic congestion in service systems such as telecommunication systems,

business and computer systems having direct economic bearings on nations and peo-

ple are analyzed via the M/M/1 governing equations under added assumptions. In

majority of urban areas, travel demands exceed highway capacities occasionally dur-

ing peak periods. In such conditions, the standard equations of the M/M/1 queuing

model under heavy traffic assumptions are suitable under this condition. In schools,

opening times are integral times in school calendars. It should be arranged devoid of
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rush hour as a necessary condition. This analysis could be carried out conveniently

under the governing Kolmogorov equations for the M/M/1 queuing model. More pre-

cisely, school pickup times and drop-off traffic times fit the M/M/1 equations under

exponential arrival and service time distributions.

It is sequel to this robustness that this research work explores an analysis of

the model under a somewhat extended structure for reasons to do with optimization

and operational research. An attempt to broaden the scope of the model is carried

out to accommodate realistic problems such as those problems to do with constraint

growth and development as observed in many service of transportation, communica-

tion, telecommunication and business. In what follows, we provide underlying reasons

why such extensions are justified.

1.3 Statement of the Research Problem:

A look at the literature on queuing systems reveals that the use of group theory

in the analysis of queuing systems is not exploited generally. Intuitively, it can be

envisaged that this stand is connected with the fact that in most queuing analysis,

the assumption of homogeneity is a strong assumption. There are two reasons why

this no exploit is weak. First, homogeneity of objects is unrealistic; Krishnamoorthy

[3]. Secondly, the homogenous assumption employed in most queuing analysis limits

the scope of application of models such as the M/M/1 queuing model in question.

Suppose one is faced with a heterogeneous customer problem as we see everyday in

banks where counters have distinct customer subgroups such as withdrawal counter

for cashing customers, forex counter for currency exchange customers, etc. Since the

assumption of homogeneity in most queuing models is strong, one cannot use these

equations to capture this kind of problem. Generally, other basic assumptions govern-

ing most queuing models suffice for problems such as the one exemplified above. The

absence of heterogeneity assumption makes adoption impossible and unrealistic. As
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in Sulaiman et al. [37], suppose one entrepreneur wishes to create jobs in a production

system where there are two distinct types of jobs in the system with no relationship

of any sort. Because of the near imperfect job structure in this case, homogenous

job assumption embedded in the classical M/M/1 model will be unrealistic a.s. More

precisely, it can make attainment of investment goals difficult. Such difficult-to-attain

goals arising from homogenous counts in a heterogeneous situation may have direct

consequences on entrepreneurship and business. Without doubt, it could lead to loss

of jobs due to poor instrumentation and analysis. Unfortunately, existing M/M/1

global balanced equations are not free from homogenous assumption problem. Thus,

these equations realistically cannot analyzed such production centers effectively since

they cannot guarantee near exact results under imperfect considerations. More so,

adopting such equations in their classical form without taking into account customer

sub-groupings for quantification will impact negatively on the performance of produc-

tion centers because of embedded homogeneity therein. Thus, there is need to extend

the geometry of the said equations from their classical form to a group theory form so

that their usage transcend originally designed homogenous problems with extension

to heterogeneous problems.

1.4 Aim and Objectives of the Research:

The aim of this research is to extend the basic equations of the classical M/M/1

queuing model to the heterogeneous case via group theory analysis. This is carried out

by assuming that in an arbitrary production center whose queuing feature is that of the

M/M/1 queuing system has two distinct customer subgroups and a null intersection,

with a view to arriving at an extended M/M/1 model equations capable of solving

even optimization problems of heterogeneous-customer-base-production centers.
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To achieve this aim, the following objectives are drawn

1. To construct an extended model of the M/M/1 queuing system with two het-

erogeneous customer subgroups.

2. To prove the stationary probability distribution and expectations of the model

constructed in (1) above.

3. To analytically compare results proved for the model constructed in (1) above

with results for similar models in the literature.

4. To provide remarks on the performance of the model in (1) above relative to

those models compared.

1.5 Significance of the Research:

This research is significant to the following category of persons:

1. Government willing to understand the impact of sectors and subsectors on the

entire service system for improving performance.

2. Academics as a source of reference.

3. Business owners and entrepreneurs whose businesses have heterogeneous cus-

tomer structures for optimization and better service delivery.

1.6 Scope and Limitations of the Research:

The scope of this research covers all areas where existing equations of the classical

M/M/1 queuing model can be applied. In addition, it encompasses additional con-

straint problems true for centers with heterogeneous customer structures. However,
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results of this research depend to a large extent on the rate equality principle which

drives Poisson arrival processes to steady state.

1.7 Definition of Terms

Definition 1 (Random Variable) : A random variable can be defined as a func-

tion acting on a given event space in terms of a numerical value, about which a

probability statement can be made.

If X is a random variable then, the above definition can be expressed mathematically

as

X : Ω −→ [0, 1],

where Ω is a subset of Rn.

Definition 2 (Probability Generating Function) : A probability generating func-

tion (PGF) of a discrete random variable X with probability Px and intensity z is

defined as;

P (z) = E[zX ] =
∞∑
x=0

Pxz
x. (1.1)

P(z) is convergent on the unit disc |z| ≤ 1.

Definition 3 (Laplace Transform of a Probability Function) : The Laplace trans-

form of a probability function f ∗(z) for a random variable X is defined as

f ∗(z) = E[e−zX ] =
∞∑
x=0

Pxe
−zx. (1.2)

Definition 4 (Geometric Distribution) A random variable X with parameter p

denoting the probability that the xth trial out of x-trials is a success is said to be

geometric if

P (X = x) = (1− p)x−1p, x = 0, 1 , 2... (1.3)
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Definition 5 (Poisson Distribution) A random variable X with parameter λ is

said to have a Poisson distribution if its probability density function is given by

P (X = x) =
λxe−λ

x!
, x = 0, 1 , 2, .. (1.4)

where x is a non negative integer representing the probability that, there are exactly

x-arrivals and e=2.71828.

Definition 6 (Exponential Distribution) A random variable X with parameter µ

is said to have an exponential distribution if its probability density function is given

by

P (X = x) = µe−µx; x > 0, µ > 0. (1.5)

Definition 7 (Service Facility) : A service facility is a point in a service system

where customers take service.

A service facility may be an ATM post, a production center, a parking space, a

petroleum station, a mosque, a church or even a mall.

Definition 8 (Arrival Rate) : An arrival rate is the intensity of arriving cus-

tomers in a system.

Definition 9 (Service Rate) : The service rate is the average time customers spent

on the service facility.

It is the expected value of all individual service times for a given system.

Definition 10 (Steady State) : Steady state means limiting state for a queuing

system.

In steady state, the rate at which customers arrive a system equals to the rate at

which they depart away from the system.
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Definition 11 (The Server Utilization) : The server utilization is the fraction of

time the server in a system is busy.

Definition 12 (Sojourn Time) : The sojourn time of a customer is the amount

of time the customer stays in a system until he receives service.

It is denoted by T and is simply given by;

T = W + S, (1.6)

where W is the waiting time and S is the service time.

Definition 13 (Waiting Time) : The waiting time of a customer in a system is

the amount of time the customer stays in a wait (queue) before given the opportunity

to enter the service facility.

Definition 14 (Service Time) : The service time of a customer is the time a cus-

tomer spends on a service facility measured from the instant he starts receiving service,

until the end of his service period.

Definition 15 (Queuing Discipline) : The queuing discipline is a rule describing

the manner to which customers access the service facility to receive service.

It defines the order to which service is to be received. A queueing discipline may

be First-Come-First-Served (FCFS), a Last-Come-First-Served (LCFS), Processor

Sharing (PS) or Priority Discipline (PD).

Definition 16 (The M/M/C Queue) : By the M/M/C queue, we mean a queu-

ing system where by, customers enter the system according to a Poisson process

(first M means Memoryless) independent of any arrival with an expected value of λ,

then receive service in a time that is exponentially distributed (M means Memoryless)

with expected value µ, on any of the available C servers (C means servers) in the

system.
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The number of servers in a system specifies the individual M/M/C queue. For In-

stance, if C = 1 or C = ∞ then,the M/M/C queue becomes, an M/M/1 or an

M/M/∞ queue.

Definition 17 (The M/G/C Queue) : By the M/G/C queue we mean a queu-

ing system with a Poisson process arrival (M means Memoryless) independently

at an expected value of λ, to receive service at a service time that is not speci-

fied (G means General) on any of the C servers in the system (C is the num-

ber of servers).

Definition 18 (Markov Process) : A Markov process is a process whose values at

different time instants are independent at a distance of one step.

The Markov process that marks the feature of queuing systems are those referred to

as embedded Markov chains since, we are looking at embedded points on the time

axis at a specific chosen instant such as the departure instant and so on. The residual

service time denoted by Rres, is the remaining service time for the current customer

on service as seen by an arriving customer.

Definition 19 (Accessibility and Communication) : A state j in a Markov chain

is said to be accessible from another state j∗, if there exist a positive probability P such

that, starting from j∗, the Markov chain will visit state j after a finite number of steps.

This statement could be expressed for some n number of steps as;

j∗ → j if for some n ≥ 0 : P n
j∗,j > 0. (1.7)

If states j and j∗ are accessible from each other then, the two states communicate

and is written as, j ↔ j∗. A Markov chain having all states communicating is called

an irreducible Markov chain.
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Definition 20 (Aperiodicity) : A state j in a Markov chain is said to be aperiodic

if, the set of all transitions to state j from another state j∗ has a greatest common

divisor (gcd) of one.

It is interesting to know that, if the states in a Markov chain form a communicating

class then, each state in the chain is aperiodic.

Definition 21 (An Ergodic Markov Chain) : A Markov chain is called ergodic

if it is irreducible and aperiodic.

Definition 22 (An Optimization Problem) : An optimization problem can be

defined as a problem to do with selecting the best solution out of many feasible solu-

tions.

Definition 23 (A Constraint Customer) : A customer is called constraint if there

exists certain functions that deny the normal functioning of the customer in a service

system.

Definition 24 (A Normal Customer) : A customer is called normal if all his

service functions are equivalent to that provided by a service system.

Definition 25 (The rate equality principle) : The rate equality principle states

that in steady state, the rate in which customers enter a service system is equal to the

rate at which they leave the system.



Chapter 2

Literature Review

2.1 Introduction

Generally, whenever the demand for a given service exceeds the capacity to provide

it, there will always exist congestion; Medhi [16]. Congestion, delays and queuing

problems are most common features not only in our daily-life situations,1 but also

in more technical environments such as manufacturing, computer networking and

telecommunications. For example, in the United States of America (USA), Hillier &

Lieberman [10] estimated that Americans spend 37,000,000,000 patience-hours per

year waiting in various queues. If this time could be spent productively instead,

it would amount to nearly 20 million persons-years of useful work each year. The

mathematical study of congestion, delays and queues is called queuing theory. More

precisely, queuing theory is the mathematical study of congestion and waiting lines.

It utilizes mathematical models and performance measures to assess and improve the

flow of customers in a queuing system. Queuing theory has many applications and

has been used extensively by service industries. Additionally, queuing theory is used

to assess staff schedules, working environment, productivity sectors, patient’s waiting

1Such as at a bank or postal office, at a ticketing office, in public transportation or in a traffic

jam

11
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time, etc.

Queuing theory itself does not directly find solutions to delays, congestion and

queue formations, it contributes vital information required for such decisions by pre-

dicting various characteristics of the queues such as the average waiting time, the

average number of customers in the queue; (Gross & Harris [7]; Hillier & Lieberman

[10]). Similarly, Willig [2] described a queuing system as a service center together

with a population of customers that may enter the service center at various points of

time in order to get service. In many cases, the servers in a given service center can

only serve a limited number of customers at a time. If a new customer arrives and

there is no free server among the servers in a system, the customer enters a waiting

line and waits until a server becomes available. The term customer is used in a gen-

eral sense and doesn’t imply necessarily a human customer. For example, Gross &

Harris [7] stated that the word customer could be used for a ball bearing waiting to

be polished, an airplane waiting in line to take off, or a computer command waiting

to be performed.

As customers do not like to wait in queues, queue managers of establishments do

not also like customers to wait. This is because customer impatience has a negative

impact on business of firms as it leads to loss of potential customers. Thus, vari-

ous queuing models have been studied to provide solutions to congestion and delay

problems experienced in service systems. For instance, Kumar [28], Kapodistria [34],

Fuhrmann & Cooper [38]. The most common service station is that station with

a single server present in the system. The literature covering this kind of service

stations are dominant generally.

2.2 The Single Server Queue:

By a single server queue, we mean a waiting line generated in a uni-server station

under a given arrival and service distributions. Models under single server system
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category may include; the M/M/1 queuing model [Def. 16], the M/D/1 queuing

model, the M/G/1 queuing model, the G/G/1 queuing model and etc.

Over the years, a lot of research has been carried out in the analysis of single

server queuing systems. For instance, Abdelkader & Maryam [13] studied a single-

server Markovian queuing system called the M/M/1 queue. Using the method of

order statistics, Abdelkader & Maryam [13] computed some performance measures

for the M/M/1 queue. The result shows that there is an inverse relationship between

the traffic intensity of customers and idle service intervals. Mohammad [36] studied

the total minimum expectation cost of a bank in solving the waiting line problems.

Using the M/M/1 queuing model and linear programming technique, the performance

of the system was estimated. Poongodi & Muthulakshmi [39], studied the construc-

tion of control charts for systems involving congestion and traffic problems. Using

the M/M/1 queuing model, the performance of the system was improved. Modares

& Fakher [26] studied material flow under heavy traffic conditions. Using the M/M/1

queuing model, an analysis of the in-site traffic was obtained and applied in deter-

mining optimum stock levels of materials at destination shops. The least stock levels

at destination shops for a predetermined production interruption rate was obtained.

Boer et al. [29] studied various properties of the M/M/1 queuing system. Boer et al.

[29] obtained analytically the properties of flexibility and robustness of the M/M/1

queuing model. In addition, the work provided a strong evidence for the cross entropy

optimality.

Tsitsiklis & Xu [17] studied queuing system topologies with limited flexibility us-

ing the M/M/n and M/M/1 queuing models. Comparing the performance of the two

models, the M/M/1 queuing model obtained the fully flexible system with a much

larger capacity region. Hence the M/M/1 queuing model is robust to uncertainties or

changes in the arrival rates. Girish & Hu [25] developed some higher order approxi-

mations for estimating the performance measures in a GI/G/1 queue with splitting,

merging and feedback phenomena. Approximations for the moments and the lag-1
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auto correlations of splits from a renewal process or from a departure process of the

model in question was derived. The moments of the split process were obtained ex-

plicitly from that of the original process. Similarly, the auto correlation was expressed

in terms of the moments and auto correlations of the system times. Girish & Hu [25]

obtained that the superposition of two renewal processes is a Markov renewal process.

Whitt [43] approximated the performance of time- varying Gt/GI/1 queue using

the diffusion approximations and heavy-traffic limits. It was established that a heavy

traffic limit theorem for the model in question exists. Adan & Kulkarni [14] studied

a single-server MAP/G/1 queuing system where the inter-arrival times of customers

and their service times [Def. 14] depend on a common discrete time Markov chain.

The service times of customers are assumed to be independent and identically dis-

tributed random variables. Using Lindley’s integral equation, Adan & Kulkarni [14]

derived the steady-state waiting time and queue length distributions leading to a

recursive equations for the calculation of moments of the function model. Natalia

[41] reviewed the stochastic decomposition for the number of customers in an M/G/1

[Def. 17] retrial queues under reliable server regime and when the server is subjected

to breakdowns. Under exponential assumption for retrial times, an approximation in

the non-exponential case was obtained. Similarly, an approximated solution for the

steady-state queue size distribution was derived. Natalia [41] proved that increas-

ing the traffic intensity and the coefficient of variation of service times and that of

retrial times have an adverse effect on the performance of the approximation.Song

et al. [46] studied the optimal service policies in an M/G/1 queuing system with

consecutive vacations. Using a finite state Semi-Markov decision model, the optimal

service policy to minimize the long-term average cost for the vacation system was ob-

tained. Haviv [22] studied the M/M/1 queuing system with a particular interest on

customer behavior.2 Haviv [22] obtained the appropriate non-cooperative games and

their Nash equilibria. Khew et al. [35] provided a new approach for finding basic per-

2With respect to their cost/reward parameters
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formance measures of the GI/G/1 queuing system. Given that the inter arrival and

service times are discrete random variables, the steady-state waiting time distribution

for the continuous time GI/G/1 queue model was obtained. Thangaraj & Vanitha

[42] studied the M/G/1 queuing system using Bernoulli probability distribution and

uni vacation policy. Given that the server takes a vacation at an exponentially dis-

tributed period, the time dependent probability generating function was derived. A

steady state results for the mean queue length and mean waiting time [Def. 13] were

computed.

Overall, the literature on single server queue is enormous. Additionally, the nu-

merous results proved for this queuing system especially the M/M/1 model emphasize

the continuous interests of scholars and experts on the model.

2.3 The Single Server Queues under Constraints:

Maglaras et al. [5] studied a multi-product M/G/1 queuing system with the intention

of controlling the lead time for service. A tractable approach to obtain the lead time

constraints through the admission and sequencing control was provided using a deter-

ministic fluid-model. Finally, a general and a relatively simpler constraint approach

more simpler than a heavy-traffic approach with specific admission policies and con-

sistent with heavy traffic analysis was developed. Cheng et al. [6] studied a two

stage M/M/1 tandem queuing system under process queue time (PQT) constraints

and proposed a batch process admission control (BPAC) model. The queuing sys-

tem studied consists of an upstream batch process machine and a downstream single

process machine where the waiting time of each job in the downstream queue is con-

strained by an upper limit. Violation of this limit causes scrap of the job. Simulation

result shows that the proposed BPAC model outperforms other methods in every key

system performance indices.

Noah & Zhou [12] investigated an inbound telephone call center queuing system
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that processes two types of work under service level constraints. Using dynamic pro-

gramming methods, an optimal policy normalization was derived. The results show

that when the expected service times of the two classes differ, the policies are optimal

within the class of priority policies. The determination of optimal policy parameters

can be obtained through the solution of a linear program with O(c3) variables and

O(c2) constraints. Sundaresan [33] studied the capacity constraint problem in an

exponential server timing channel ./M/1 queuing system via point process channels.

The point-process approach enables the timing channels that arose in both single and

multi server queues to be studied. Sundaresan [33] provided an analytical bounds

for the queuing system and highlighted a method to obtain achievable rates using

simulation technique.

Abdolghani [9] studied the Markovian queuing system with Poisson inter arrival

rate and exponential service times for customers. A queuing system having finite

storage capacity with additional customers get rejected whenever the buffer is full

was assumed. Using Bellman equations for bounded and unbounded action space

and Lagrangian analysis, an idea of constrained Markov decision process is obtained.

Xiaofei & Feinberg [44] studied the problem of optimal admission of arriving customers

in a Markovian finite-capacity queuing system with several customer types. The study

considered that the system managers be rewarded for serving customers and penalized

for rejecting customers. The rewards and penalties depend on customer types. Xiaofei

& Feinberg [44] aimed at maximizing the average rewards per unit time subject to

the constraint on the average penalties per unit time. Using a Linear Programming

transformation method and optimal policies based on Lagrangian optimization, it was

shown that the existence of a 1-randomized trunk reservation optimal policy with an

acceptance thresholds for different customer types exists.

Sumitha & Chandrika [8] studied a batch arrival retrial Mx/G/1 queuing system

with two phases of heterogeneous service and controllable arrivals. The study assumed

that when a server is idle, batch customers are admitted into the system for service.
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In addition, upon completion of service, the server may go for a single vacation or

remain idle in the system. Under steady state analysis, the solution for a retrial

queue with admission control and vacation was obtained. Ayyappan & Shyamala

[11] studied a single server batch arrival non-Markovian retrial queuing system with

non persistent customers. Using probability generating function methods, the steady

state solution with performance measures of the system and the reliability indices were

obtained. Jeeva1 & Rathnakumari [24] studied a retrial M/G/1 queuing system with

modified vacation policy, random server breakdown, balking and optional re-service.

Using supplementary variable technique, the probability generating functions of the

number of customers in the system when it is idle, busy, on vacation and under

repair are obtained. In addition, performance measures of this queuing system was

derived. Artelajo & Falin [15] compared a single server M/G/1 and the multi server

M/M/c models of retrial queues with emphasis on similarities and differences between

the retrial queues and their counterparts. The study demonstrated that although

retrial queues are closely connected with these standard queuing models, they however

possess unique distinguished features. For instance, the standard queuing models do

not take into account the phenomenon of retrials and therefore cannot be applied

in solving a number of practically important problems. Similarly, early works on

retrial theory have shown that retrial queues are suitable mathematical models for the

modeling of subscribers behavior in telephone networks. Laghaie et al. [20] studied a

single server queuing system subject to two different deteriorating conditions. Using

the conditions of a planning horizon on the D/M/1 queuing system in accordance with

certain maintenance policy, a new model was developed. The model controlled sojourn

times for optimal values of arrival rates. Similarly, the model controlled maintenance

policy and cost for reasons to do with minimization. Ayestaa et al. [40] studied a

single server M/G/1 processor sharing (PS) queuing system with multiple vacations.

The server only takes a vacation when it is empty. If the system is empty upon return

after vacation of the server, the server takes another vacation, and so on. Under the
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following constraints, the service discipline satisfies a branching property. Similarly,

the arrival processes at various queues are independent Poisson processes. Ayestaa et

al. [40] determined the sojourn time distribution of an arbitrary customer and sojourn

time distribution in the M/M/1-PS queuing system of a polling model. Chih-ping et

al. [21] studied two convex optimization problems in a multi-class M/G/1 queuing

system with a control service rates.The minimizing convex functions of the average

delay vector and average service cost were both subject to per-class delay constraints.

Using virtual queue techniques, the delay and rate-optimal control in a multi-class

priority queue with adjustable service rates was obtained . The model was analyzed

and validated through simulations.

Pant & Ghimire [1] studied the M (t)/M/1 queuing system with customer arrival

rate following a sinusoidal time process and the server’s rate is an exponential time

process. The aim is to derive a model for this system. For this model, Pant &

Ghimire [1] obtained the expected number of customers in the system, the expected

number of customers in the queue, and etc. In addition, numerical results for various

parameter change were obtained. Krenzler & Daduna [30] studied the M/D/1 queuing

system with infinite waiting room in a random environment where the service system

and the environment interact in both directions. It is supposed that whenever the

environment enters a pre specified subset of its state space, the service process is

completely blocked, interrupted and newly arriving customers are lost. Using queuing-

inventory and reliability theory, Krenzler & Daduna [30] obtained a product form

equilibrium of the embedded Markov chain under general conditions. In addition,

numerical results for various parameters were obtained.

Kumar et al. [31] studied the M/M/1 single server queuing system with retention

of reneged customers. Using economic analysis of an optimum strategy for a firm to

maximize its profit under the constraints, Kumar et al. [31] obtained a recursive

formula for the steady-state solution. In addition, the total expected cost, total

expected revenue and total expected profit functions were derived. Similarly, the
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optimum system capacity and optimum service rate was obtained. Kumar et al.

[32] studied a Markov modulated Poisson process of the single server queuing system

called the MMPP/M/1. The study aimed at minimizing a combination of effort

cost and holding cost incurred per unit time using the discounted and average cost

optimality criterion. Kumar et al. [32] characterized the structure of an optimal

service rate as being monotone in the queue length for each arrival rate. In particular,

the manner in which the process switches between the arrival rates plays an important

role in determining the structure of the optimal policy. When the transition matrix

governing the MMPP is stochastically monotone, then optimal control arrival rates

are obtained.

Maglaras [4] studied the problem of dynamic pricing for a multi product make-

to-order system using a multi class single server queuing system Mn/M/1 model with

controllable arrival rates, general demand curves, and linear holding costs. The prob-

lem of maximizing the expected revenues minus holding costs by selecting a pair of

dynamic pricing and sequencing policies was studied. Using a deterministic and con-

tinuous (fluid model) relaxation the solution for the optimal greedy sequencing and

the optimal pricing and sequencing decisions decouple in finite time was obtained.

Artalejo & Lopez [18] provided a survey on information theoretic technique for es-

timating the performance characteristics of the M/G/1 retrial single server queuing

system. Basically, the survey focused on the limiting distribution of the system state,

the length of a busy period and the waiting time. Using the principle of maximum

entropy (PME) to estimate probability distributions under given constraints, the solu-

tions were obtained. Similarly, the numerical experiments showed the goodness of the

maximum entropy solutions. Wanga et al. [19] studied an M/G/1 single removeable

queuing system operating under the N policy in steady-state where a server is turned

on at arrival epochs or off at departure epochs. Using the maximum entropy princi-

ple with several well-known constraints, the approximate formula for the probability

distributions of the number of customers and the expected waiting time in the queue
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was developed. Similarly, a comparative analysis between the approximate results

with exact analytic results for three different service time distributions, exponential,

2-stage Erlang, and 2-stage hyper-exponential was obtained. The maximum entropy

approximation approach is accurate enough for practical purposes. On illustration,

the maximum entropy approximation approach proved accurate enough for practical

purpose.

Guo et al. [45] studied optimal probability routing in distributed parallel queuing

system. Guo et al. [45] established the stochastic process limit for the GI/GI/1 queu-

ing system, analyzed diffusion process to obtain an approximation for the correspond-

ing equilibrium sojourn time. Using this approximation process, the optimal routing

probability was calculated. Herlicha et al. [23] studied the energy efficient queuing

system with delayed activation and deactivation using an M/G/1 single server. The

study analytically determined the steady state distribution and derived a closed form

formula for both power consumption and latency depending on the rate of arrival,

processing, activation, deactivation, activation delay, and deactivation delay. Using

simulation, the results obtained demonstrated that it also holds for other random

distributions.

2.4 Literature Gap:

From the literature reviewed, it can be seen that a lot of works on the single server

queuing system has been carried out. Similarly, single server queuing systems with

constraints have equally been studied. The most striking feature of the literature

covering queuing system analysis is combined customer analysis (homogenous con-

siderations). Very little exists on queuing analysis under distinct customer group

consideration. Even though, it is evidently clear that customers of service systems

where queuing results are required are mostly organized in groups and subgroups. A

problem area depicting this type of systems is an imperfect production center whose
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imperfection is sequel to certain latency problems in the system. Analyzing this type

of system is necessary for performance evaluation relative to cost of service, quality of

service and optimization purposes. Though in Sulaiman et al. [37], a similar problem

with arithmetic properties is studied, the model presented cannot capture beyond

1-cycle of latency in a system. There are numerous production centers with more

than 1-cycle of latency as a result of customer behaviors, service provider’s behavior

and etc. Additionally, there are several service systems for instance, ATM systems,

banking systems, computer systems and etc with constraint customers whose sizes

are known to be monotonically increasing.

To the best of our knowledge, models covering this kind of industry problems

are not fully discussed in the literature. Most importantly, this kind of industry

problem requires group analysis for better posing and desired results. The next

chapter provides a methodology on the modeling of a case problem for a single server

Markovian queuing system.



Chapter 3

Modeling

3.1 Basic Assumptions:

Consider an optimization problem O(.) [Def. 22] to do with the number of customers

N in an M/M/1 queuing system. Let {N} = {c}⊗{n}; {c}∩{n} = {}. Where {c} is

a constraint subgroup of {N} [Def. 23] and {n} is an un-constraint subgroup of {N}

[Def. 24]. Suppose that customers arrive the queuing system according to a Poisson

process [Def. 5] at a rate of λ to receive 1 service on the single server in the system.

The service time of customers is assumed to follow the exponential distribution [Def.

6] with service parameter µ. For reasons to do with stability, we suppose that the

occupation rate [Def. 11] ρ = λ
µ
< 1.

3.2 Model Evolution

Generally, the M/M/1 queuing system will evolve in time; see Medhi [16]. That

means, as t → ∞, the time dependent group of customers {N(t)} → {N}. Conse-

quently, an analysis of the M/M/1 queuing system under this condition is a stationary

1That means there are two types of customers in the system with distinct characteristics
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analysis. Let j denote the present state of the stationary group process {N}. Then

the associated Markov chain for this group process is two-state since a transition

from j resides only in (j − 1). In addition, j ↔ (j − 1). Hence, the Markov chain is

irreducible, [Def. 19]. Let k denote the number of steps to reach (j−1) given that the

chain is initially in j. Then the greatest common divisor (gcd) of the set containing

the number of times the chain goes to j given that it was in (j − 1) is unity. That is,

the gcd(k) = 1. Hence, the Markov chain is aperiodic, [Def. 20]. One can conclude

that the Markov chain for the customer process N is an ergodic Markov chain, [Def.

21]. Now, suppose that the rate equality principle for Poisson arrival processes holds.

Let P be a probability measure on the random number [Def. 1] N ∈ {N} such that

P [N = j] = Pj gives the probability that there are j customers in {N}. Then from

the known queuing results below

λP0 = µP1; j = 0 (3.1)

(λ+ µ)PN = λPN−1 + µPN+1; j > 0 (3.2)

PN =

[
1−

(
λ

µ

)](
λ

µ

)N
j ≥ 0, (3.3)

given that {N} = {c} ⊗ {n}; {c} ∩ {n} = {} such that

N = nc = c, 2c, 3c, ..., rc, ... c ∈ N, n = 0, 1, 2, 3, ... (3.4)

Then the size of the group {N} of stationary customers in the system can be computed

under multiplier effect of the size of {c} on the subgroup {n}. The direct interpre-

tation of this kind of the M/M/1 queuing system is that of a uni-server system with
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two distinct customer subgroups where the effect of one subgroup is dominant on the

other subgroup.

Now, denote by V (z) the probability generating function (PGF) for the stationary

number of customers in {N}. In view of [Def. 2] and the definition of N in (3.4)

above, one can write

V (z) =
∞∑
N=0

PNz
N =

∞∑
cn|n=0

Pcnz
cn, c ∈ N (3.5)

Equation (3.5) contains all vital information on the stationary performance charac-

teristics of the optimization problem O(.) described above. More precisely, if V (z) is

known then, one can compute all vital characteristics of O(.) such as the waiting time

and queue length distributions and expectations for one subgroup under the effect of

the other subgroup for optimization purposes and better service delivery.

3.3 Model validation

The extended model of the M/M/1 queuing system designed in this work will be

validated using the classical M/M/1 model. For varying sizes of {n} and a fixed size

of {c} as in (3.4), we proposed that the extended model is valid if there exists an

n ∈ ℵ and a λ ∈ < such that

P{c}⊗{n}(extended) = PN(classical) (3.6)

3.4 Discussion of Results

Analytic results derived in this work will be compared with those of two models

namely; the classical M/M/1 model and the additive model presented in Sulaiman

et. al. [37]. This comparison will be carried out as a discussion on areas of gains
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of the model presented in this work on the impact of subgroup {c} on the entire

distributions of customers in the system.



Chapter 4

Results and Discussions

Lemma 4.0.1 Given the customer group {N} = {c} ⊗ {n} : {c} ∩ {n} = {}; the

stationary probability PN that there are N customers in the group {N} is given by

PN = ρcc(1− ρc)ρnn(1− ρn) (4.1)

Proof Suppose an ordered paired process {N(t) = c(t)n(t), ζ(t)}t≥0 is given. Where

N(t) denotes the number of customers in the system at time t and ζ(t) is the past

service time of an arbitrary customer in {N}. Looking at the system at departure

instants upon completion of service of an arbitrary customer, the bi-variate process

{N(t), ζ(t)}t≥0 is a Markov process; see [Def. 18]. Assuming that the service time of

customers is continuous and that the system is empty at time t = 0. Then one can

apply the supplementary variable technique on {N(t), ζ(t)}t≥0; Boxma et al. [27].

Let P be a probability measure on {N(t), ζ(t)}t≥0 such that1

P [{N(t), ζ(t)} = 0] = P [cad{N(t), ζ(t)} = 0]; cad{c} = 0, cad{n} = 0. (4.2)

1The cardinality of a group denoted by (cad) in this work is the number of customers, elements

or objects in the group
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P [{N(t), ζ(t)} = c] = P [cad{N(t), ζ(t)} = c]; cad{c} = c, cad{n} = 1. (4.3)

P [{N(t), ζ(t)} = cn] = P [cad{N(t), ζ(t)} = cn]; cad{c} = c, cad{n} = n. (4.4)

Now, given that λ < µ for all arrivals within {N}, then as t → ∞, the time de-

pendent probabilities P [cad{N(t), ζ(t)} = 0], P [cad{N(t), ζ(t)} = c] and finally,

P [cad{N(t), ζ(t)} = cn] converge to P [cad{N, ζ} = 0] = P0, P [cad{N, ζ} = c] = Pc

and P [cad{N, ζ} = cn] = Pcn respectively, [Def. 10]. Similarly, the time dependent

process {N(t), ζ(t)}t≥0 → {N, ζ}; see Medhi [16]. Let P [N = n|c] denote the prob-

ability that there n ∈ {N} customers in the system given that there were c ∈ {N}

fixed customers. Suppose that every arrival n ∈ {N} is followed by a departure

(rate-equality principle)with the condition that {c} ∩ {n} = {}. Then by the ergodic

theorem, the following difference-differential equations are satisfied by the stationary

process {N, ζ}.

λcP0 = µcP1 : c = 0 (4.5)

(λc + µc)Pc = λcPc−1 + µc+1 : c > 0 (4.6)

λnP (n = 0|c) = µnP (n = 1|c) : n = 0 (4.7)

(λn + µn)P (n = n|c) = λnP (n = |n− 1|c) + µnP (n = n+ 1|c) : n > 0 (4.8)

By the Markov property of the system as claimed and combining (4.5) and (4.6)

for c = 0, 1, 2, 3, ..., we have

Pc =

(
λc
µc

)c
P0 (4.9)
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The zero state probability P0 that clears c ∈ {c} customers is obtained from the

normalization condition

∞∑
c=0

Pc = P0 + P1 + P2 + ... = 1 (4.10)

Consequently,

Pc =

(
λc
µc

)c(
1− λc

µc

)
(4.11)

Similarly, combining (4.7) and (4.8) for n = 0, 1, 2, 3, ... when there are c ≥ 0

customers, we have

P (n = n|c) =

(
λn
µn

)n
P (n = 0|c) (4.12)

P (n = n|c) =

(
λn
µn

)n [
1−

(
λn
µn

)n]
(4.13)

The lemma holds good upon combining (4.11) and (4.13) for λi
µi

= ρi.

Lemma 4.0.2 The stationary expected number of customers in the subgroup {n}

when there are c ∈ {c} customers is given by

E[n|c] = cPc.
[
E[N ]M/M/1

]
(4.14)

Proof Denote by V (z) the PGF [Def. 3] of the number of customers in the group

{N} generally. In view of (3.5) when c is fixed and n = 0, 1, 2, 3, ..., we have

V (z) = P0 + P1.cz
c + P2.cz

2c + P3.cz
3c + ... (4.15)
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So that (4.15) becomes

V (z) = P0 + Pcz
c + P2cz

2c + P3cz
3c + ... (4.16)

In view of (4.1), one can write (4.16) as

V (z) = ρcc(1− ρc)(1− ρn){1 + ρnz
c + ρ2nz

2c + ρ3nz
3c + ...} (4.17)

Which gives in view of (4.1) again that

V (z) = P0(1 + ρnz
c + (ρnz

c)2 + (ρnz
c)3 + ...) (4.18)

(4.18) is an infinite geometric series with common ration ρnz
c. Hence, we have

V (z) =
P0

1− ρnzc
(4.19)

Differentiating (4.19) with respect to z yields

V
′
(z) =

cP0ρnz
(c−1)

(1− ρnzc)2
(4.20)

Where V ′(z) gives the expectation of customers in the subgroup {n} when there are

c ∈ {c} customers in the system. The lemma follows upon evaluating (4.20) at z = 1

with simple re-arrangement and simplification.

Lemma 4.0.3 Suppose N < ∞ such that N → K for some K ∈ <+. Then the

stationary expected number of customers n ∈ {n} given c ∈ {c} is given by

E[n|c] =
cρnρc

c(1− ρc)[(1− ρKn )−KρK−1n (1− ρn)]

(1− ρn)
(4.21)

Proof Denote by U(z) the PGF of the number of customers n ∈ {n} when there are

c ∈ {c} customers in the system. By the definition of PGF [Def. 3] for c ≥ 0 and

n = 0, 1, 2, 3, ..., we have

U(z) = P0 + Pcz
c + P2cz

2c + P3cz
3c + ...+ PcKz

cK (4.22)
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In view of (4.1) with some rearrangement, we have

U(z) = ρc
c(1− ρc)(1− ρn)[1 + ρnz

c + (ρnz
c)2 + (ρnz

c)3 + ...+ (ρnz
c)K ] (4.23)

Upon further rearrangement and application of certain basic properties of geometric

series, we have

U(z) = ρc
c(1− ρc)(1− ρn)

[
1− (ρnz

c)K

1− ρnzc

]
= P0

[
1− (ρnz

c)K

1− ρnzc

]
(4.24)

Letting the numerator of (4.24) as ψ and the denominator as φ and then differ-

entiating the said equation with respect to z yields

U ′(z) =
−cKP0φ(z)ρKn z

cK−1 + ψ(z)cρnz
c−1

(1− ρnzc)2
(4.25)

The lemma follows after evaluating (4.25) at z = 1 upon further simplification.

4.1 Discussions and Remarks

In this section, we compare results derived in this work with those of the model

presented in Sulaiman et al. [37]. We wish to study the impact of certain consider-

ations adopted here and how such considerations aid the understanding of imperfect

production centers for better strategies and operations.

Remark 4.1.1 Suppose the subgroup {n} = {}. Under the condition of no arrival

into the subgroup {n}, then the stationary probability PN in (4.1) is that of the clas-

sical M/M/1 queuing system.

Intuitively, if {n} = {}, then the stability condition of the system is saddled on the

subgroup {c}. Consequently, the total number of customers in the entire customer

group {N} = {c} ∪ {n} = {c} ∪ {} = {c}. Putting n = 0 in (4.1) yields

PN = ρcc(1− ρc)(1− ρ0) (4.26)
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Where ρn=0 = ρ0 is the probability that no arrival occurring at the rate λn in the

system takes place. Finally, the remark holds if one lets ρ0 = 0 in (4.26) trivially.

Under this condition, there is an equivalence relation between (4.26) at ρ0 = 0 and

(5.1) in the appendix-1. This equivalence relation proves the validity of the model

presented in this work.

Remark 4.1.2 There exists a direct relationship between the size of the subgroup {n}

and the stationary probability Pc.

This is in view of Lemma 4.02. More precisely, the lemma implies a direct relationship

between the size of the elements in the subgroup {n} and the stationary probability

Pc given that c and E[M/M/1] are constants. Thus, the maximizer of the elements

of {n} is any real valued function that increases the tendency Pc in (0, 1).

Remark 4.1.3 Under similar arrival and service conditions of the extended model

presented in this work with that of Sulaiman et al. [37], it canbe concluded that

E[N ](extended) < E[N ](additive) a.s.

This is in view of comparative analysis of (4.21) and (6.3). Additionally, by the

comparative analysis of (4.1) and (6.1) with that of (6.2) that shows the slow nature

of reversal of (4.1) to (6.1) more slower than that of (6.2) to (6.1).



Chapter 5

Summary, Recommendations and

Conclusion

5.1 Summary

In this research work, an extended model of the classical M/M/1 queuing system with

two customer subgroups is developed. Using group theory and analysis, stationary

probability distribution PN that there are n ∈ {n} customers when there are already

c ∈ {c} customers is obtained. Similarly, the expected number E[n|c] for n ∈ {n}

in the system given c ∈ {c} customers are derived. The derivations considered both

finite and infinite buffer assumptions. Other areas covered include a comparison

on the performance of the extended model relative to the classical M/M/1 model

and the additive subgroup model presented in Sulaiman et al. [37] leading to some

remarks. The remarks show a direct relationship between the size of the subgroup {n}

and the stationary probability Pc. Additionally, the work proves a unique condition

under which the probability distribution PN of the extended model goes to that of

the classical M/M/1 queuing model. Finally, it is valid to propose group theory

in queuing system performance analysis especially where heterogeneity is part and
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parcel of the system.

5.2 Recommendations:

For the purpose of extending this research work, it is recommended that:

1. Another class of constraint be studied via the group theory methodology presented

in this work.

2. Performance analysis and derivations covering multi server queuing systems via group

theory analysis will be an interesting research.

3. Extension of the group theory analysis to data modeling will be an interesting research

either.

5.3 Conclusion:

Result obtained in this research work can be applied in service systems with homo-

geneous or heterogeneous customer structures for reasons to do with optimality.



Chapter 6
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Appendices

6.1 Appendix-1

In the queuing literature, it is well known for N -homogenous jobs that the stationary

probability of maintaining these jobs in a uni-server production center is given by

PN = (1− ρ)ρN (6.1)

The parameter ρ is the occupation rate of the center; Medhi [16]

6.2 Appendix-2

Lemma 6.2.1 Given {N} = {c} ⊕ {n}; {c} ∩ {n} = {}; then

E[N ] =
ρc[ρ+ c(1− ρ)]

1− ρ
. (6.2)

6.3 Appendix-3

Lemma 6.3.1 For a finite capacity imperfect production center with two distinct job

groups {n} and {c}, we have

E[N ] =
ρc
[
(1− ρK)(c(1− ρ) + ρ)−K(1− ρ)ρK

]
1− ρ

(6.3)
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