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Abstract 

Introduction: S. aureus is recognized as the common cause of nosocomial 
and community-acquired infections. Macrolide-Lincosamide-Streptogramin 
B (MLSB) is thought to be alternative therapies against MRSA infections. 
Clindamycin is the most favored agent because of exceptional pharmacoki-
netic characteristics. However, increasing resistance to clindamycin among 
MRSA strains is a serious challenge. The current study investigated the pro-
file of clindamycin resistance among MRSA isolates from Humans, and their 
respective livestock (in particular swine) using D-test in greater Kabale re-
gion. Materials and Methods: Three hundred phenotypic MRSA isolates 
previously isolated from Humans and swine were confirmed by mecA PCR. 
We performed D-test using erythromycin (15 μg) and clindamycin (2 μg) 
discs in accordance to Clinical and Laboratory Standards Institute (CLSI) 
protocol. Results: Of all 300 MRSA isolates, 6% (n = 18) were sensitive to 
Erythromycin and Clindamycin (S). The rate of inducible clindamycin resis-
tance (iMLSB) was 42% (n = 125) and 38% (n = 115) was resistance to both 
Erythromycin and clindamycin (cMLSB). However, 14% (n = 42) were resis-
tant to erythromycin but sensitive to clindamycin (MS) without “D” zone 
negative. Conclusion: Clindamycin resistance (both cMLSB and iMLSB) 
among MRSA was high and “D” test should be adopted routinely during an-
timicrobial susceptibility testing by disc diffusion testing to rapidly detect 
iMLSB and cMLSB. 
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1. Introduction 

S. aureus is recognized as one of the most common organisms causing noso-
comial and community-acquired infections worldwide. The emergence of mul-
tidrug resistant S. aureus strains, especially methicillin resistant S. aureus (MRSA), 
is of a particular concern. In Uganda, this has been largely attributed by empiri-
cal antibiotic prescriptions [1]. The cumulative MRSA problem is an indicator 
for urgent need for new antibiotics.  

Macrolide-Lincosamide-Streptogramin B (MLSB) antibiotics have been thought 
about as alternative solution to treat MRSA infections [2]. The most commonly 
used antibiotic in the MLSB group are the macrolides (e.g. erythromycin and 
azithromycin) and clindamycin which is a Lincosamide [3]. 

Macrolides act through inhibition of protein synthesis by binding irreversibly 
to the 23S ribosomal RNA (rRNA) on the bacterial 50S ribosomal subunit and 
subsequent disruption of the growing peptide chain by blocking translocation 
[4]. Lincosamide [e.g. clindamycin and lincomycin] bind to the 50S ribosomal 
subunit and prevent peptide elongation by interfering with the peptidyl transfer 
during protein synthesis [5]. Clindamycin is the most preferred agent because of 
exceptional pharmacokinetic characteristics [6] and is regularly used in the 
management of severe infections, caused by macrolide resistant S. aureus in-
fections including MRSA [7]. However, increasing resistance to clindamycin 
among MRSA strains and other Staphylococcus is a serious challenge [8]. The 
expression of clindamycin resistance in Staphylococcus species can be constitu-
tive or inducible [9] [10] through erm genes which codes for ribosomal methy-
lases [11]. In addition, the resistance to the lincosamides (clindamycin), macro-
lides (erythromycin), and streptogramins (quinupristin/dalfopristin) is facili-
tated by three related genes, ermA, ermB, and ermC, that encode for erythromy-
cin resistance methylases [12]. Methylase enzymes binds on to the ribosome re-
sulting in a conformational change or modification in the ribosomal target and 
consequently, decreasing the ability of these drugs to bind to the ribosome [5] 
[13]. 

Inducible Clindamycin resistance (iMLSB) cannot be identified by standard 
methods of antibiotic susceptibility testing and failure to detection may result 
into treatment failure with Clindamycin [6]. Erythromycin-resistant staphylo-
cocci are routinely considered to be resistant to Clindamycin by clinicians [14], a 
phenomenon that is wrong that shuns Clindamycin prescription to patients in-
fected with macrolide-resistant isolates that may be sensitive to Clindamycin. It 
is rational to routinely test for presence of iMLSB strains and this can be 
achieved cheaply by use of Erythromycin and clindamycin discs placed adjacent 
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to each other during routine antibiotic sensitivity testing by Kirby Bauer tech-
nique for S. aureus [2] [15] [16]. Data on profiles of clindamycin resistance 
among MRSA in Kabale region—South western Uganda is not available. There-
fore, the current study investigated the profile of clindamycin resistance among 
MRSA isolates from Humans, and their respective livestock (in particular swine) 
using D-test.  

2. Materials and Methods 

This was cross-sectional study, where 300 phenotypic MRSA isolates previously 
isolated from humans (n = 200) and swine (n = 100) during the period of Janu-
ary 2015 to June 2016 and stored in glycerol (20%v/v) at −80˚C.  

2.1. DNA Extraction 

These isolates, were subjected to DNA extraction following Queipo et al. and 
Teeraputon et al., techniques [8] [17] by boiling using 100 µl of the bacterial 
suspension in 1.5 ml cryogenic vials (Eppendorf, Germany) followed by centrifu-
gation at 3000 rpm for 15 minutes. The supernatant was removed, and the pellet 
suspended using molecular biology-grade water (Eppendorf, Germany) and re 
centrifuged at 3000 rpm for 10 min. The supernatant was discarded, and the 
pellet suspended in 100 µl of molecular biology-grade water. The suspension was 
subjected to boiling at 100˚C for 10 min, cooled on ice, and centrifuged at 15,000 
rpm for 10 seconds before it was stored at −20˚C. 

2.2. PCR Amplification 

Aliquots of 2 µl of template DNA was used for PCR to detect and amplify mecA 
gene with origonucleotide primer mecA F;  
5-TCCAATTACAACTTCACCAGG-3 and mecA R  
5-CCACTTCATATCTTGTAACG-3 synthesized by GenxBio to confirm their 
MRSA status. The reaction mixture (25 µl) consisting of 100 pmol of each pri-
mer, Taq polymerase (2.5 U), Mg2+ (2.5 mM), 2.5 µl PCR buffer and 3 µl tem-
plate DNA. The PCR program was as follows: 3 min at 94˚C; followed by 40 
cycles of a 30 seconds denaturation step at 94˚C, a 30 second annealing step at 
45˚C and a 30 second extension at 72˚C; and a final 10 minutes extension step at 
72˚C. The amplified product was a 533 bp sequence, which was detected by 1% 
agarose gel electrophoresis with (0.5 mg/L) ethidium bromide stain and observa-
tion under UV light. All strains positive for the mecA gene and designated 
MRSA. MecA positive (ATCC 43300) and MecA negative (ATCC 29213) were 
used as positive and negative controls. 

2.3. Detection of Phenotypic Clindamycin Resistance 

To detect clindamycin resistance, a suspension of 0.5 McFarland standard equiva-
lent was prepared from all genotypically confirmed MRSA isolates and a lawn 
culture of bacterial suspension was seeded on to sterile Muller Hinton Agar 
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(MHA) plates. Onto the seeded plates, disk of Clindamycin (2 μg) and Erythro-
mycin (15 μg) was place in approximately 15 mm apart (measured edge to edge). 
The inoculated plates were further incubated at 37˚C for 16 to 18 hours. The 
zone of clearance with flattening characteristics (D-shaped) around clindamycin 
in the area between the two adjacent discs, indicated iMLSB [16]. 

2.4. Media Quality Control 

Before use, Mueller Hinton agar (MHA) was quality controlled (QC) by check-
ing its physical appearance, sterility after preparation and capacity to support 
growth. Sterility testing was performed on 5% of each batch of new medium 
prepared in house media selected randomly and incubated for 48 hours at 35˚C 
to 37˚C under aerobic conditions to check for contamination. Fertility test was 
performed using QC control strains (Staphylococcus aureus ATCC 25923, 
Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) and sub-
jected to Kirby-Bauer Susceptibility Testing protocol [2] using three MHA plates 
from each batch prepared and incubated for 18 - 24 hours at 35˚C to 37˚C under 
aerobic atmosphere. All the media used passed quality control measures. 

3. Results 

Among the MRSA isolates (n = 300), 6% (n = 18) of the strains were sensitive to 
both erythromycin and clindamycin, designated as S phenotype. However, 38% 
(n = 115) MRSA strains showed resistance to both erythromycin (zone size ≤ 13 
mm) and clindamycin (zone size ≤ 14 mm) and these strains were constitutively 
resistant to clindamycin and designated as “cMLSB” phenotype. In addition, 
42% (n = 125) showed resistance to erythromycin (zone size ≤ 13 mm) and sen-
sitive to clindamycin (zone size ≥ 21 mm) with a “D-shaped” zone of inhibition 
around. These were identified as inducible clindamycin resistant strains and they 
were designated as iMLSB. Of note, 14% (n = 42) showed resistance to erythro-
mycin (zone size ≤ 13 mm) and sensitive to clindamycin (zone size ≥ 21 mm) 
without “D” zone of inhibition around clindamycin and were designated as MS 
phenotypes as shown in Figure 1. 

Among the MRSA with iMLSB phenotypes, 46% (n = 92) isolates were from 
humans, 33% (n = 33) from swine. In addition, cMLSB phenotype, 34% (n = 68) 
originated from human while 47% (n = 47) were from swine. However, among 
the MS phenotypes, 15% (n = 30) and 12% (n = 12) were from human and swine 
respectively whereas among the S phenotype, 5% (n = 10) were from human and 
8% (n = 8) were from swine (Figure 2). D-test was used to rule out cMLSB and 
iMLSB (D zone present) as shown in Figure 3. 

Results of mecA gene PCR where an Amplicon of approximately 180 bp was 
expected using positive and negative controls are shown in Figure 4. 

4. Discussion 

The increasing frequency of the Staphylococcal infections and their respective  
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Figure 1. Clindamycin and Erythromycin resistance pattern of MRSA isolates. Footnote: 
S = Sensitive to both clindamycin and erythromycin, cMLSB = constitutive clindamycin; 
iMLSB = inducible clindamycin resistance (D zone present); MS = Erythromycin resistant 
but clindamycin sensitive (D zone absent). 
 

 
Figure 2. MLSB resistance profile among MRSA isolates. Footnote: cMLSB = constitutive 
clindamycin; iMLSB = inducible clindamycin resistance (D zone present); MS= Erythro-
mycin resistant but clindamycin sensitive (D zone absent). 
 

 
Figure 3. D-test showing inducible clindamycin resistance. 
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Figure 4. Results of mecA gene PCR. where an Amplicon of approximately 180bp was 
expected. Lad is 100bp ladder, Lane Pos. contains the Positive control (MRSA ATCC 
43300), and Lanes 1, 2, 3 MRSA isolated from Human 4, 5, and 9 MRSA isolated from 
swine. Lane 6, 7, 8 MSSA from Human and 10 and 11 were MSSA isolates from swine. 
MSSA contains a Methicillin Susceptible S. aureus strain ATCC 25923, whereas Neg. is 
the Negative amplification control. 
 
changes in antimicrobial resistance patterns has led to a renewed interest in 
clindamycin as therapeutic choice. In fact, MRSA prevalence is now regarded as 
a pandemic scourge with varying prevalence across different countries and 
among the hospitals as well as livestock population [18] [19]. Indiscriminate use 
of antibiotics in both human and animal coupled with poor clinical practices 
may be contributing factors leading to the emergence of MRSA and other anti-
microbial resistances(AMRs). Currently, Macrolide-Lincosamide-Streptogramin 
B (MLSB) resistance is on the rise and catching public health interest [12]. The 
Macrolide–Lincosamide–Streptogramin B (MLSB) resistance may be of the con-
stitutive (cMLSB) or the inducible (iMLSB) type. The isolates with cMLSB are re-
sistant to both erythromycin (ER) and clindamycin (CL) and they are readily 
detected by in vitro testing. This family of antibiotics (MLSB) is increasingly used 
because of their excellent oral absorption and decent tissue penetration as well as 
their ability to accumulates in abscesses. This has made it the best choice in both 
veterinary and human medicine [19] [20] [21]. Clindamycin is an antimicrobial 
agent which belong to the Macrolide–Lincosamide–Streptogramin B (MLSB) 
family. The wide spread use of the MLSB family of antimicrobials has led to the 
emergence of resistance. Our study showed prevalence of induced Macro-
lide-Lincosamide-Streptogramin B (iMLSB) among MRSA isolated from both 
Human and swine 42%, which is in agreement with other reports elsewhere [21] 
[22] [23]. Higher rates of iMLSB have been reported in other studies conducted 
in Uganda [24] and Kenya [25]. Molecular studies have indicated that some 
SCCmec elements on MRSA may carry transposon Tn554 which contains the 
gene ermA mediating MLS resistance [23]. This could be a probable reason for 
higher rate of resistance reported in our study. MRSA isolates from human had 
higher iMLSB compared to those isolated from swine. This suggests an increas-
ing usage of this class of antibiotics resulting selective pressure and consequently 
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multidrug resistance [26]. Probable widespread empirical use of erythromycin 
and clindamycin today and increasing consumption are the drivers of selective 
pressure [27]. We suggest reduction in macrolide usage to reverse such resis-
tance pattern as it has been described elsewhere [28].  

Clindamycin resistance can develop in the Staphylococcal bacteria with the 
inducible phenotype and spontaneous constitutive resistant mutants can also be 
selected from iMLSB isolates. This may happen both in vitro and in vivo during 
the CL treatment and this phenomenon is faster in the MRSA strains [6] [7]. We 
report a high prevalence of cMLSB [48%] among all the MRSA isolates with high 
percentage registered swine isolates [47%]. These findings are in agreement with 
several other studies by Almasri et al. (2016) and Ganesh et al. (2016) who re-
ported that constitutive phenotype is predominant higher than inducible phe-
notype in MRSA isolates [29] [30]. However, different results have been reported 
in India, where Kumari et al. (2016) reported cMLSB (35.2%) and iMLSB (15.9%) 
showing higher constitutive resistance among MRSA [31]. In similar note, Das 
et al. (2016) showed that cMLSB was 36.8% compare to iMLSB of 31.8% in 
MRSA isolates [19]. Also, Mohammad, 2012 reported 32.5% of MRSA were 
cMLSB phenotypes and 10% were iMLSB phenotype. These variations could 
probably be due to differences in the circulating clones or due to the variations 
in infection prevention practices and trends of antibiotics prescriptions in the 
community and veterinary practice [32].  

The current study also reveals 6% of MS phenotype (E-R, Cl-S) among MRSA 
isolates. In this case, clindamycin can be used as treatment option only for less 
number of MRSA which are erythromycin resistant. While treating Erythromy-
cin MRSA infection with Clindamycin antibiotic, there is always minimum 
chance of clinical efficacy compared to vancomycin antibiotic therapy [33]. We 
therefore emphasize routine use of D-test in diagnostic laboratories to avoid 
clinical failure while using clindamycin as an alternative to anti-MRSA antibio-
tics like vancomycin and linezolid [34] [35]. 

5. Conclusion 

The prevalence of inducible and constitutive clindamycin resistance among 
MRSA Isolates from both humans and swine is high. The D test is a simple and 
affordable technique that can be used in low resourced settings to define pre-
cisely MLSB, both inducible and constitutive resistance patterns in addition to 
MSB in Staphylococcus aureus in the routine clinical laboratories. This can be an 
important strategy for good antibiotic stewardship in under resourced settings.  
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