
COMPARISON OF PROPRIETORY SOFTWARE AND OPEN
SOURCE SOFTWARE

CASE STUDY: UGANDA DOT NET

BY

BUYONJO ANNIE MERCY

DCS/1 1418/61/DU

A PROJECT REPORT SUBMITTED TO THE SCHOOL OF
COMPUTER STUDIES IN PARTIAL FULL FILLMENT

FOR THE AWARD OF A DIPLOMA IN COMPUTER

SCIENCE OF KAMPALA INTERNATIONAL

UNIVERSITY

OCTOBER 2009



DECLARATION

I Buyonjo Annie Mercy do hereby declare that this research is my original work and that
it has never been submitted to any academic institution for the award of a diploma or its
equivalent

Signature . .~~ Date . .\~



APPROVAL

This is to certify that this project report has been done under my supervision and is now
ready for submissi n to the board of examiners with my approval.

Si~a~re Date~ ~

Supervisor: Mr. Chemutai Gilbert



ABSTRACT

Proprietary software are programs whose licenses give the user permission to run them

but are not allowed to share, alter or even redistribute them while Open Source

Software/Free Software (OSS/FS), also abbreviated as FOSS (Free Open

Source Software) licenses give users the freedom to run the program for any

purpose, study, modify, and redistribute copies of either the original or modified

program without having to pay royalties to previous developers. Proprietary software has

been the most commonly used software among the public over the years though with the

growth of the Information and Communications Technologies (ICTs) industry, FOSS is a

rapidly growing and commercially accepted alternative to proprietary software in the

world. In Uganda, Proprietary software is the mostly used though FOSS is winning

several users too, but most users do not purchase licenses for these software products and

have little or no information about benefits or challenges of using either software. This

research aims at correcting this problem by providing quantitative and qualitative results

that users can use to compare software and thereby purchase appropriate programs for

their organizations. Therefore the choice of OSS/FOSS and proprietary software is an

issue whose importance can not be ignored. Our research reveals that OSS/FOSS and

proprietary performances depend on the context and situation. When it comes to this

parameter, it is hard for one to conclusively say that FOSS or proprietary software is

better. The research, however, reveals that FOSS is more reliable and more secure than

theproprietarysoftware.

111



TABLE OF CONTENTS

DECLARATION i
APPROVAL ii
ABSTRACT iii
TABLE OF CONTENTS iv

CHAPTER ONE 1
INTRODUCTION 1
I .OGeneral Introduction 1
1.1 Background 2
1.3 Background of FOSS 2

1 .4Foss in Africa 3
1.5 Background to the Case Study 3
1.6 Problem Statement 4
1.8 Research Questions ,, 5
1.9 Scope of the Research 5
1.10 Significance Justification of the Study 5

CHAPTER TWO ,... ., .

LITERATURE REVIEW 7
2.0 Introduction 7
2.1 FOSS and Proprietary Software 7
2.2 Open Standards 8
2.3 Reliability 9
2.4 Performance 11
2.5 Security 13

CHAPTER THREE 26
RESEARCH METHODOLOGY 26
3.0 Introduction 26
3.1 Research Design 26
3.2 Sources of Data 26
3.3 Data Collection Tools 26
3.4 Population of the Study 27
3.6 Data Analysis Tools 28
3.7 Data Presentation .. . 28
3.8 Limitations of the Study 28

CHAPTER FOUR 30
DATA ANALYSIS AND PRESENTATION OF RESULTS 30
4.0 Introduction 30
4.1 Results from the Survey 30
4.2Reliability .... .31
4.3 Software . ,,.,, .31
4.4 Performance ..... .31

iv



4.5 The Case Study~ 33
4.6 Results from Case Study Observation~ 34
4.7 Results from Interview Guide 35

CHAPTER FIVE 37
DISCUSSION, CONCLUSION AND RECOMMENDATIONS ,.... 37
5.0 Introduction 37
5.2 Discussion 37
5.3 Conclusion 40
5.4 Recommendations 41
REFERENCES 44

V



CHAPTER ONE

INTRODUCTION

tO GeneraD llntroduct~on

Proprietary software also known as “closed” software are programs whose licenses

give users permission to run them but are not allowed to share alter or even

redistribute them without permission. While Open Source Software/Free Software

(OSS/FS), also abbreviated as FOSS (Free Open Source Software) or FLOSS (Free

Libre Open Source Software), licenses give users the freedom to not only to run

them but also to study, modify, and redistribute copies of either the original or the

modified program without having to pay royalties to previous developers.

Proprietary software has been the most commonly used software among the public

over the years Microsoft Windows Vista, XP, Internet Information Server (ITS),

Internet Explorer, Oracle, Opera, Sun Solaris, Mac OS, and Unix among others.

While, Free or non-proprietary software, a rapidly growing and commercially

accepted alternative to proprietary software today includes GNU/Linux, Apahe

Web Server, Mozilla Firefox, and Proprietary software includes.

The aim of this research is to analyze reliability, performance and security of both

FOSS and proprietary software, (so one can consider using either software when

looking for software), using quantitative and non-quantitative measures to justify

why using either FOSS or proprietary software products is a more a reasonable

approach over the other.

1



1.1 Background

Though proprietary software is a market stronghold, Open Source Software is

increasingly cited as a viable alternative to commercial proprietary software, with

Potential significant value for money benefits for organizations. It is based principle of

software products made available by the FOSS developer community includes

commercial companies, academics and others) licensed for use with or a fee.

FOSS licenses generally give the user the freedom to use, copy, distribute, ex change and

improve the software. The commercial models that underpin distribution typically

include support charges, but there can also be other cost benefits perceived to be

associated with FOSS deployment. Costs may include training, migration of existing files

and applications, and the effort required to integrate with other software.

Apart from reductions in the cost of software licenses, benefits of OSS/FOSS include cost

avoidance through reductions in replacement cycles of hardware, imp software reliability

and security, software platform stability, the ability to tailor and the software, easier

administration, and greater scalability of hardware platforms.

1.3 Background of FOSS

Free or non-proprietary software has existed since the invention of the first computers in

the mid-1940s, and for many years it was the norm. In the 1970s, programme AT&T Bell

labs developed the UNIX operating system using the C program language, which could

be ported to any proprietary machine.

Later, AT&T began to increase the licensing fees for its UNIX operating system, le to an

initiative by Richard Stailman at MIT’s Artificial Intelligence Laboratory against

proprietisation of software. Stailman’ s pioneering efforts with the GNU project paved

way for the development of GNU/Linux an open UNIX-like alternative which released

in 1994 after Linus Torvalds’ contribution of an opcrating system kernel ft GNU project

resulted in a complete system. Today, FOSS is a rapidly growing commercially accepted

alternative to proprietary software across a range of systems and applications (VVheeler,

2007).

2



1.4Foss ~n Afr~ca

Recently, the Free Software and Open Source Foundation for Africa (FOSSFA) and a

number of partner organizations convened a conference that was content rich and brought

together a diverse range of people working in the areas of FOSS and Open Content and

saw to the release of a Kiswahili spelichecker. In Uganda, a mailing list has been put in

place for Linux Users (those working in the IT field in Uganda and are interested in and

use Open Source Software). Plans are also underway to conduct regular meetings of

Linux Users in Uganda and the monthly I- Network seminar series for a day dedicated to

Open Source Software (OSS) where the general public, university students and people

from government and industry are invited to participate in information sessions and

demonstrations of FOSS.

1.5 Background to the Case Study

1.5,1 Uganda Dot Net

Most govenrment ministries in Uganda and ISPs were running on GNU/Linux, but

support personnel were being flown into the country to operate these installations from

abroad, at great cost. This lack of capacity within the country was addressed by IICD

(International Institute for Communication and Development) from Netherlands in a joint

venture with Uganda Martyrs University and Linux Solutions Ltd, and resulted in the

establishment of a Non-Governmental Organization (NGO) called the for Uganda Dot

Net. UGANDA DOT NET, located in parliamentary Avenue, Kampala was established in

2008 as a software development organization, aimed at raising awareness of the benefits

of FOSS, and providing essential training for system and network administrators in

Uganda. Uganda Dot Net’s immediate goal is to ensure the spread and taking on of

OSS/FOSS in the Uganda and have since then been involved in FOSS advocacy and

training. They have a regular event, called the Free Software Weekend where people are

invited talk to them, and they even offer free training to these users. Uganda Dot Net has

penetrated many ICT organizations which invite them for quite a number of talks. Most

3



of their PCs in their organization run FOSS products since they are major advocates of

FOSS and trainers.

1.6 Probilem Statement

Open Source Software and proprietary software use in the ICT industry is growing

steadily side-by-side but there is a need to find out the challenges and benefits of each

software such that one can objectively make a choice of the appropriate software to use

for a particular purpose so as to effectively meet the objectives of the organization.

This research seeks to solve this problem by analyzing reliability, performance and

security of both OSS/FS and proprietary software that one can to consider using OSSIFS

or proprietary software when looking to purchase software to meet their organizational

needs.

1.7 Objectives

General Objective The main objective of this research is to analyze the reliability,

performance and security of both FOSS and proprietary software so one can consider

using either FOSS or proprietary software.

Spedflc Object~ves

1. To investigate the functionality of both FOSS and proprietary software.

2. To measure the quality of ICT services when using FOSS or proprietary

software so that users can choose appropriate software given information about

its benefits and challenges.

3. To compare the implementation and operational costs of each software such

that users can choose the most cost effective software for their organization

4. To eliminate software piracy that arises from inability of the users to purchase

expensive software licenses by providing the public with knowledge about FOSS.

4



t8 Research Questions

This research will attempt to answer the following question in an organizational setting:

Which software platform: OSS/FL OSS and/or Proprietary Software offers a

high level ofperformance, security and reliability?

To further guide our research, the following sub-questions will be used:

1. what are the challenges and benefits of using either OSS/FOSS proprietary software?

2. What software products (OSS/FOSS or proprietary) are more reliable, secure and have

better performance features?

1.9 Scope of the Research

This research will attempt only to comparatively analyze software reliability,

performance and security of the most commonly-used FOSS and proprietary software, to

show that by certain measures, some FOSS or proprietary software is as good as or even

better than its competition. The term “better” in the context of this research refers to the

ability of the software to meet the users specific needs. However good software is, once it

does not meet the user’s requirements, it is technically poor for that purpose. Of course,

some FOSS software is technically poor, just as some proprietary software is technically

poor.

Emphasis will be made on server software and operating systems and web browsers,

especially some of the most visible FOSS projects such as GNU/Linux (or Linux)

operating system (OS), the Apache web server, Moilla Firefox as compared to proprietary

products such as Windows operating systems, Internet Information server (uS) and

Internet Explorer.

1.10 Significance Justiflcat~on of the Study

This research emphasizes quantitative measures (such as experiments and observations)

as well non-quantitative measures (opinions) to justify why using either FOSS or

proprietary software products is in many circumstances a reasonable or even superior

5



approach over the other. it is hoped that the findings of the study will enable one to

objectively consider using OSSIFS or proprietary software when looking for software

basing on reliability, performance and security as well as provide more information on

the performance, reliability and security of both FOSS and proprietary software.

The beneficiaries of this study are UGANDA DOT NET who use the software for

studying, training and other day to day activities. UGANDA DOT NET do provide

training in FOSS and so require information on how this software can be implemented

and used more effectively to achieve their individual goals.

6



CHAPTER TWO

LITERATURE REVIEW

20 DntroductñOfl

This chapter discusses the review of previous works by various authors and

scholars prior to this research. Sections 2.1 and 2.2, clarify the terminologies used

in this research, while sections 2.3, 2.4 and 2.5, discuss previous comparative

studies on reliability, performance, and security of both FLOSS and Proprietary

software respectively.

2.1 FOSS and Proprietary Software

Accounting to Damien Challet he refers to Software as carries the instructions that

tell a computer how to operate. The human authored and human readable form of

those instructions is called source code. Before the computer can actually execute

the instructions, the source code must be translated into a machine readable

(binary) format, called the object code. All distributed software includes the

object code, but FLOSS makes the source code available as well.

Proprietary software owners license their copyrighted object code to a user, which

allows the user to run the program. FLOSS programs, however, license both the

object and the source code, permitting the user to run, modify and possibly

redistribute the programs. With access to the source code people have the freedom

to run the program for any purpose, redistribute, probe, adapt, learn from,

customize the software to suit their needs, and release improvements to the public

for the good of the community. Open source software (OSS) refers to technical

advantages of such software (for instance better reliability and security), while

Free Software (FS) refers to freedom from ethical Other alternative terms for

OSS/FS include “libre or “livre” software (where libre or livre means freedom),

7



free-libre / open-source software (FLOSS), free I open source software (FOSS or

F/OSS). FLOSS will be used in this research because it’s easier to pronounce.

All FOSS developers claim copyright, but then use licenses innovatively to give

users a variety of freedoms. Dominant examples of these licenses are copylefled

and noncopylefted (Lessig, 2003). Under the copylefted license, subsequent

FLOSS developers must adopt the same license which ensures that their

modifications to the code will remain open. With the non-copylefted license,

developers can choose any license to cover their subsequent modifications, even a

proprietary license.

2.2 Open Standards

Paul Murphy emphasized that Open standards in Information and

Communications Technologies (ICT5) allow freedom to access as well as to

contribute to the development of the standard by any interested party, which is not

possible under a proprietary standard. Standards are defacto and dejure, and both

arise out of complex dynamics influenced by economic, political and social forces.

Open standards in ICTs are critical to allow new entrants to participate, innovate

on standards implementation, and compete. With a proprietary standard, the owner

can prevent competitors and entrants from capturing market share through their

legally enforceable IPR. In a developing economy like Uganda, proprietary ICT

standards are typically held by foreign enterprises which effectively relegate

domestic engagement to the level of franchisee.

It cannot be over-emphasized that the Internet and World Wide Web, which are

having so much impact on the world today, would not exist without FOSS and the

inter-i development and adoption of the essential open standards, Today, nearly

two-thirds of all web servers use FOSS. A FOSS program must be released under

some IL giving its users a certain set of rights; the most popular FOSS license is

8



the GNU General Public License (GPL). All software released under the GPL is

FOSS, but not all FOSS software uses the GPL (Wheeler, 2007).

In Uganda, lnveneo, a San Francisco non-profit, together with Action Aid, an

international agency whose aim is to fight poverty worldwide, installed their first

rugged Linux desktop systems in western Uganda. The systems run Linux and

KDE desktops, and also include the OpenOffice.org productivity suite (Kendrick,

2005).

“The system is up and running since this June, 2005 where 5 units have been

installed, four of which are in villages with no access to power. The system

provides Internet access and phone capabilities to the users. Phone calls among the

connected villages are free of charge, with the ability to place and receive calls to

the Ugandan phone network. The systems are linked using 80211 WiFi links.”

(Summer, 2005).

2,3 ReD~abmty

Reliability as popularly measured by how long software can resist crashing or freeze-ups

from the time it is installed. For instance paper ‘Fuzz Revisited” measured reliability by

feeding programs random characters and determining which ones resisted crashing and

freeze-ups. defined by Justin E.Forrester and Barton P.Miller

FOSS had higher reliability by this measure. A later paper published in 2000, “An

Empirical Study of the Robustness of Windows NT Applications Using Random

Testing”, found that with Windows NT GUI applications, they could crash 21% of the

applications they tested, hang an additional 24% of the applications, and could crash or

hang all the tested applications when subjecting them to random WI n32 messages.

The fuzz paper’s authors also found that proprietary software vendors generally didn’t fix

the problems identified in an earlier version of their paper (from 1990). There was a

slight decrease in failure rates between their 1990 and 1995 paper, but many of the flaws

they found (and reported) in the proprietary Unix programs were still not fixed 5 years

later. In contrast, Scott Maxwell led an effort to remove every flaw identified in the

9



OSSIFS software in the 1995 fuzz paper, and eventually fixed every flaw. Thus, the

OSSIFS community’s response shows why, at least in part, OSS!FS programs have such

an edge in reliability; if problems are found, they’re often fixed.

IBM put Linux to a 10-month test and ran Caldera Systems Open Linux, Red Hat Linux,

and Windows NT Server 4.0 with Service Pack 3 on duplicate 100MHz Pentium

systems with 64MB of memory. The results: the NT server crashed an average of once

every six weeks. Each failure took roughly 30 minutes to fix. That is really bad

considering that neither Linux server ever went down. (Vaughan-Nichols, et al, 1999).

A 3-month Swiss evaluation, on the difference between Netscape (proprietary) and

Apache (FOSS) shows the results of Syscontrol AG’s analysis of website uptime

(announced February 7, 2000) They measured over 100 popular Swiss web sites

over a three-month period, checking from 4 different locations every 5 minutes.

Below is their set of published data on “average down-time (in hours in that

month) for each type of server”, plus a 3-month average that I have computed:

German import company Heinz TrOber compared Linux-based desktops to

Windows and found that Windows had a 15% daily failure rate, while Linux has

0%. . . . ,ter Stoverock, the data processing manager at German import company

Heinz r, reported that they had decided to run its ERP software on Linux-based

systems,

of Windows, because Windows was much less reliable. Stoverock stated that m

Windows, “Out of 65 desktops, around 10 desktops crashed daily. Employees

around 30 minutes, that’s five times 30 minutes per week.” Note that this is a daily

failure rate, and the actual impacts were almost certainly more severe than

~a loss of 2 minutes of lost time per reboot. imien Challet and Yann Le Du of the

University of Oxford have written a paper titled Closed source versus open source

in a model of software bug dynamics, where they develop a model of software bug

dynamics in which users, programmers can interact through a given program.

Then they analyzed the model, and found that all other things being equal (such as

10



number of users, programmers, and quality of programmers), “debugging in open

source projects is always faster than in closed source projects.” (Damien, et al,

2005).

However, one problem with reliability measures is that it talces a long time to

gather data on reliability in real-life circumstances. Thus, there’s more data

comparing older Windows editions to older GNU/Linux editions. The key is that

these comparisons are fair, because they compare contemporaneous products.

(Wheeler, 2007).

2.4 Performance

Birabwa K (2006) defines open soft ware as measure of performance of

software, it is best to set up the benchmark yourself in a given environment, as

performance is very sensitive to the assumptions and the environment because it is

very likely that you may use biased measures from other authors. However below

are different findings.

On comparing GNU/Linux and Microsoft Windows performance on equivalent

hardware, TPC-C database (2002) measure found that a Linux based system on

HP ProLiant DL580 with 32 Intel Xeon 900MHz CPUs running Oracle 9i R2

Enterprise edition ran faster running on a stock Red Hat Linux Advanced Server

than on Microsoft Windows 2000 Advanced Server. According to the report, HP

did not modif~i the Linux kernel to get these results as illustrate in these two

performance tests: Their “real-world” test measured how quickly large quantities

of email could be sent using their email delivery server (MailEngine). Up to 100

simultaneous sends there was no difference, but as the number increased the

systems began showing significant differences in their hourly email delivery

speed. By 500 simultaneous sends GNU/Linux was clearly faster than all except

FreeBSD-tuned, and GNU/Linux remained at the top. FreeBSD-tuned had similar

performance to GNU/Linux when running 1000 or less simultaneous sends, but

11



FreeBSD-tuned peaked around 1000-1500 simultaneous connections with a steady

decline not suffered by GNU/Linux, and FreeBSD-tufled had trouble going

beyond 3000 simultaneous connections. By 1500 simultaneous sends, GNU/Linux

was sending 1.3 million emails/hour, while Solaris managed approximately 1

million, and Windows 2000 and FreeBSD-untuned were around 0.9 million.

Their “disk I/O test” created, wrote, and read back 10,000 identically-sized files in

one directory, varying the size of the file instances. Here Solaris was the slowest,

with FreeBSD-untUned the second-slowest. FreeBSD-tuned, Windows 2000, and

GNU/Linux had similar speeds at the smaller file. When totaling these times

across file sizes, the results were GNU/Linux: 542 seconds, Windows 2000: 613

seconds, FreeBSD-tuned: 630 seconds, FreeBSD-untUned: 2398 seconds, and

Solaris: 3990 seconds. One organization that tries to develop unbiased benchmarks

is the SPEC Consortium, which develops and maintains a whole series of

benchmarks. We can compare Microsoft Windows versus GNU/Linux by

comparing SPECweb99 results (which measure web server performance) on

identical hardware if both have undergone the same amount of performance

optimization effort. Using all results available by July 13, 2001, there were three

hardware configurations, all from Dell, which ran both GNU/Linux (using the TUX

web server/accelerator) and Windows (using uS) on exactly the same underlying

hardware. The SPECweb99 results as of July 13, 2001 (larger is better), noting

configuration differences are as follows: The second entry (the PowerEdge 6400/700)

certainly suggests that GNU/Linux plus TUX really is much better the iTS system had

two more disk drives available to it (which should increase performance), but the TUX

system had over twice the us system’s performance. The I1S systems had at least one

drive that revolved more quickly than the TUX systems. Note that TUX is intended to be

used as a “web accelerator” for many circumstances, where it rapidly handles simple

requests and then passes more complex queries to another server (usually Apache).

12



Basing on Windows and GNU/Linux pipes (an input/output mechanism), process thread

creation, a study examined the performance of pipes, a common low- mechanism for

communicating between program processes and it was found that th pipes in Red Hat 7.1

(with Linux kernel version 2.4.2) had a peak I/O rate of around MB/sec, with a

steady state at near 100 MB/sec for very large block sizes. In contrast, Windows 2000

peaked at 500 MB/sec, with a large block steady state of 80 MB/sec. Windows XP

Professional peak I/O rate was only 120 MB/sec, with a stead state of 80 MB/sec.

Comparing the performance of threads; Linux managed to create over 10,000

threads/second, while Win2K did not quite manage 5,000 threads/second and Win XP

only created 6,000 threads/second. )n process creation, Linux managed 330

processes/second, while Win2K and WI nXP created less than 200 processes/second and

160 processes/second respectively (Wheeler, 2007). A report that compares their research

prototype to Windows, Linux, and FreeBSD exposes performance figures that compare

these operating systems directly to each other. What’s noteworthy about it is that

Microsoft compared Singularity to FreeBSD and Linux as well as Windows/XP and

almost every result shows Windows losing to the two Unix variants.” (Murphy, 2005).

2.5 Security

quantitatively measuring security is very difficult. Security is it is often measured by a

survey of opinions, from people who are informed and have use used the software

because it is hard to measure. Though opinions can be wrong it is very hard to ignore the

opinions collected from a large sample space of users who are in the know. This research

will concentrate on comparing FOSS to Windows systems, since other proprietary

systems are increasingly including FOSS components (making comparisons more

difficult).

At one time the security of FOSS systems was widely debated. Clearly FOSS systems are

not magically invincible from security flaws. But for most of those who study the

question, the issue of whether or not FOSS improves or reduces security appears to be an

increasingly settled issue. Below are some quantitative studies that compare this

13



software.

According to a combination of studies from the Honeynet Project (2004), AOL, and

others that compared the unpatched Linux systems to unpatched Windows systems, the

average Linux system lasts three months before being compromised, (a significant

increase from the 72 hours life span of a Linux system in 2001). Unpatched Windows

systems continue to be compromised far more quickly, sometimes within minutes. This

data on Windows compromise is consistent with other studies. Avantgarde found that

Windows did not last long, and one unpatched Windows XP system (pre-SP2) only tasted

4 minutes on the Internet before it was compromised and in general did not last long.

Note, however, that users who install Windows Service Pack 2 have much less risk than

previous versions of Windows. Symantec’s Internet Security Threat Report (January 1-

June 30, 2004), The Internet Storm Center’s Survival Time History claims that by

December 2004 a Windows survival time of 18 minutes. The Bugtraq vulnerability

database that examines security was used to compare the vulnerability of OSes running

FOSS and proprietary software in 1999-2000. One approach to examining security is to

use a vulnerability database. Below js an analysis of one database from the Bugtraq

Vulnerability Database Statistics page as of September 17, 2000, listing the total number

of vulnerabilities for some leading OSes:

Windows NTl2bdO

Some vulnerabilities are more important than others (some may provide little if exploited

or only be vulnerable in unlikely circumstances), and some vulnerabilities are being

actively exploited (while others have already been fixed before exploitation).

Comparing the FOSS and proprietary response to security problems; Red Hat (an FOSS

vendor) responded more rapidly than Microsoft or Sun to advisories. Sun had fewer

advisories to respond to yet took the longest to respond. Security Portal compiled a list of

“the time it takes for vendors to respond to vulnerabilities”, and concluded that Red Hat

had the best score, with 348 recess days on 31 advisories, for an average of 11.23 days

from bug to patch. Microsoft had 982 recess days on 61 advisories, averaging 16.10 days

from bug to patch. Sun proved itself to be very slow, although having only 8 advisories it

14



accumulated 716 recess days (three months) to fix each bug on average. Their table of

data for 1999 is as shown:

Vendor Total Days, Hacker Recess Total Advisories Recess Days Advisory

Red Hat 348 31 11.23

Microsoft 982 61 16.10

Sun 716 8 89.50

It is worth noting that the Open BSD OS (FOSS) had fewer reported vulnerabilities than

all of these. Clearly, having a proprietary OS doesn’t mean you’re more secure ~Microsoft

had the largest number of security advisories, by far, using either counting method.

Eweek Labs’ article “Open Source Quicker at Fixing Flaws” (September 30, 2002) listed

specific examples of more rapid responses. This article can be paraphrased as follows:

In June 2002, a serious flaw was found in the Apache Web server; the Apache Software

Foundation made a patch available two days after the Web server hole was announced. In

September 2002, a flaw was announced in OpenSSL and a patch was available the same

day. In contrast, a serious flaw was found in Windows XP that made it possible to delete

files on a system using a URL; Microsoft fixed this problem in Windows XP Service

Pack I without notifying users of the problem. A more direct comparison can be seen in

how Microsoft and the KDE Project responded to an SSL (Secure Sockets Layer)

vulnerability that made the Internet Explorer and Konqueror browsers, respectively,

potential tools for stealing data such as credit card information. The day the SSL

vulnerability was announced, KDE provided a patch.

In an August 18, 2004 interview, Symantec’s chief technology officer Robert Clyde

argued that proprietary vendors were more reliable for fixing problems within a fixed

timescale, and that he didn’t know of a single vendor who would sit on a vulnerability.

Yet the day before (August 17), and eWeek article revealed that Oracle waited 8 months

15



to fix a vulnerability. And Microsoft waited 9 months to fix a critical TB

vulnerability (and only fixed it after it was being actively exploited in 2004).

A study on software immunity from outside attacks by Evans Data Corp.’s (2002),

over 400 GNU/Linux developers found that even though computer attacks have

almost doubled annually since 1988 (according to CERT), 78% of the respondents

to the GNU/Linux developers survey have never experienced an unwanted

intrusion and 94% have operated virus-free. Clearly, the survey shows that

GNU/Linux “doesn’t get broken into very often and is even less frequently

targeted by viruses,” according to Jeff Child Evans Data Corp.’s Linux Analyst

who tested Linux systems immunity from attacks from outsiders notes that it’s

much harder to hack a knowledgeable owner’s system (and most Linux developers

have hands-on, technical knowledge) and that because there are fewer desktop

GNU/Linux systems there are fewer viruses being created to attack GNU/Linux.

The developers being surveyed attributed the low incidence of attacks to the Open

Source Software (OSS) environment; “more than 84% of Linux developers believe

that Linux is inherently more secure than software not created in an OSS

environment,” and they ranked “Linux’s security roughly comparable in security

to Solaris and AIX and above any of the Windows platforms by a significant

margin.” Eweek’s report that compared the security of Apache to Microsoft’s ITS,

examined that Apache’s last serious security problem (one where remote attackers

could run arbitrary code on the server) was announced in January 1997. A group

of less serious problems (including a buffer overflow in the server’s logresolve

utility) was announced and fixed in January 1998 with Apache 1.2.5. In the three

and a half years since then, Apache’s only remote security problems have been of

denial-of-service and information leakage problems (where attackers can see files

or directory listings they shouldn’t). eWeek’s April 10, 2002 article noted that ten

more ITS flaws were found in liS Server 4.0, 5.0, and 5.1, some of which would

allow attackers to crash the ITS service or allow the attacker to run whatever code

he chooses.

16



Apache wisely follows the good security practice of “least privilege.” While ITS is

designed so that anyone who takes over ITS can take over the whole system,

performing actions such as reading, modifying, or erasing any file on the system.

In contrast, Apache is installed with very few privileges by default, so even taking

over Apache gives attackers relatively few privileges. For example, cracking

Apache does not give attackers the right to modify or erase most files.

The article claims there are four reasons for Apache’s strong security, and three of these

reasons are simply good security practices. Apache installs very few server extensions by

default (a “minimalist” approach), all server components run as a non- privileged user

(supporting “least privilege” as noted above), and all configuration settings are

centralized (making it easy for administrators to know what’s going on). However, the

article also claims that one of the main reasons Apache is more secure than IIS is that it’s

“source code for core server files is well-scrutinized,” a task that is made much easier by

being FOSS, and it could be argued that OSS/FS encourages the other good security

practices.

It was attacked 1,400 times more frequently than Apache in 2001, and Windows was

attacked more than all versions of UNIX. SecurityFocus co-founder and CEO Arthur

Wong reported an analysis of the various vulnerabilities and attacks (based on

SecurityFocus’s data) in the February 2002 article. It was attacked 17 million times, but

Apache was attacked only 12,000 times. In 2001, Windows systems were attacked 31

million times, while Unix systems were attacked 22 million times.

Some security vulnerabilities are more important than others, for a variety of reasons.

Thus, some analysis centers try to determine what’s “most important,” and their results

suggest that OSS/FS just doesn’t have as many vulnerabilities.

The CERT Coordination Center (CERT/CC) is federally funded to study security

vulnerabilities and perform related activities such as publishing security alerts.

Four of the six most important security vulnerabilities were specific to Microsoft:

W32/Nimda, W32/Sircam, cache corruption on Microsoft DNS servers, and “Code

17



Red” related activities. Only one of the six items primarily affected non-Microsoft

products (a buffer overflow in telnetd); while this vulnerability is important, it’s

worth noting that many open source systems (such as Red Hat 7.1) normally do not

enable this service (telnet) in the first place and thus are less likely to be vulnerable.

Computer viruses are a serious security problem in software. Virus infection has been a

major cost to users of Microsoft Windows. The LoveLetter virus alone is estimated to

have cost $960 million in direct costs and $7.7 billion in lost productivity, and the anti-

virus software industry sales total nearly $1 billion annually. Dr Nic Peeling and Dr

Julian Satchell’s Analysis ofthe Impact ofOpen Source Software includes an analysis

of the various data sources for virus counts, noting the disproportionate vulnerability of

Windows systems.

They found out that numbers differ in detail, but all sources agree that computer viruses

are overwhelmingly more prevalent on Windows than any other system. There are about

60,000 viruses known for Windows, 40 or so for the Macintosh, about 5 for commercial

Unix versions, and perhaps 40 for Linux. Most of the Windows viruses are not important,

but many hundreds have caused widespread damage. Two or three of the Macintosh

viruses were widespread enough to be of importance. None of the Unix or Linux viruses

became widespread ~most were confined to the laboratory.

In contrast, while it’s possible to write a virus for FOSS OSes, their design makes it more

difficult for viruses to spread... showing that Microsoft’s design decisions were not

inevitable. It appears that FOSS developers tend to select design choices that limit the

damage of viruses, probably in part because their code is subject to public inspection and

comment (and redicule, if deserving of it). For example, FOSS programs generally do not

support attacker-controlled start-up macros, nor do they usually support easy execution of

mail attachments from attackers. Also, leading OSS/FS OSes (such as GNU/Linux and

the *BSD5) have always had write protection on system directories, making it more

difficult for certain attacks to spread. OSS/FS systems are not immune to malicious code,

but they are certainly more resistant.

18



According to a June 2004 study by network management firm Sand’iine, 0010 of a V

spam comes from computers contaminated with Trojan horse infections. Trojans and

worms with backdoor components turn infected PCs into drones in vast networks of

‘umpromised zombie PCs. Most PCs affected were running Windows programs.

Sandvine identified subscribers bypassing their home mail servers and contacting many

mail servers within a short period of time over sustained periods - i.e., spammers. It also

looked at SMTP error messages returned to clarify the total volume of spam. They then

compared this with the messages passing through the service provider’s mail system.

National Cyber Security Alliance’s study of May 2003 reported that 91% of Broadband

users have spyware on their home computers running proprietary operating systems. In

contrast, there’s no evidence of that this is an issue for OSSIFS systems. America Online,

Inc. conducted a study for the National Cyber Security Alliance. Its results, “Fast and

Present Danger: In-Home Study on Broadband Security among American Consumers”

(May 2003). They found that “91% of Broadband Users Have Spyware Lurking on Home

Computers”. Their study method did not appear to permit collection of data from OSS/FS

systems, and spyware systems are essentially nonexistent on OSS/FS systems anyway.

The SecurityTracker Statistics paper (March, 2002) analyzed vulnerabilities from April

2001 through March 2002 and identified 1595 vulnerability reports, covering 1175

products from 700 vendors. Their analysis found that Microsoft had 187, or 11.7% of all

vulnerabilities), and more than four times the next vendor. The next largest were Sun (42,

2.6% of the total), HP (40, 2.5%), and IBM (40, 2.5%). Solely OSS/FS vendors did much

better: the Apache Software Foundation had 13 (0.8% of the total), and Red Hat had 10

(0.6% of the total). In late June 2004, Microsoft had failed to patch a critical vulnerability

for 9 months, and IE was being actively exploited in horrendous ways. Customers then

rushed to download Mozilla and Mozilla Firebird, popular OSS/FS alternatives, to

replace IE. The U.S. CERT warned that the Microsoft browser (IE) cannot protect against

vulnerabilities,

The “quantity” shows the number of vulnerabilities, but doesn’t account for their

criticality. Thus, he also computes a “relative danger” by simply “adding up the

19



criticality levels for each vulnerability (not criticall, extremely critical5)”. As of

that date:

• “Internet Explorer has had 43 reported vulnerabilities. 7 were marked as

moderately critical, 11 were marked as highly critical, and 6 were marked as

extremely critical. There are still 25 unfixed vulnerabilities, including 6 that were

marked as moderately critical, 1 that was marked as highly critical, and I that was

marked as extremely critical.”

“Mozilla Firefox has had 21 reported vulnerabilities. 8 were marked as

moderately critical, 4 were marked as highly critical, and 0 were marked as

extremely critical. There are still 4 unfixed vulnerabilities, including 1 that was

marked as moderately critical.”

“Opera has had 23 reported vulnerabilities. 14 were marked as moderately

critical, 0 were marked as highly critical, and 0 were marked as extremely critical.

All reported vulnerabilities have since been fixed.”

Brian Krebs “Security Fix” column compiled statistics on vulnerability response

times, including those for Microsoft Internet Expibrer (lE) and Mozilla Firefox.

He found that for “a total 284 days in 2006 (or more than nine months out of the

year), exploit code for known, unpatched critical flaws in pre-1E7 versions of the

browser was publicly available on the Internet. Likewise, there were at least 98

days last year in which no software fixes from Microsoft were available to fix IE

flaws that criminals were actively using to steal personal and financial data from

users.

In TechWeb.com (February 9, 2005), Gregg Keizer’s article “Spyware Barely

Touches Firefox” describes some research work from the University of

Washington. Henry Levy stated that his research showed that users “will have a

safer experience [surfing] with Firefox.” Researchers Henry Levy and Steven

20



Gribble crawled 45,000 websites, cataloguing their executable files, and then

exposed unpatched Internet Explorer (IE) and Firefox browsers to them. “If you

browse, you’re eventually going to get hit with a spyware attack.” (Levy) Perhaps

choosing the program with the better record would help. Microsoft took 134 days

on average to release patches for security problems in 2004- 2005; Mozilla

averaged 37 days. Brian Krebs’ “A Time to Patch II: Mozilla” compared patch

times of Mozilla with Microsoft. Even with an outlier included, Mozilla did much

better on average than Microsoft. Mozilla took an average of about 37 days to

issue patches for critical security problems in its products over a 3-year period. In

general it did much better; one-third of its critical security updates were within

less than 10 days of being notified. (The longest time was for a bug that perhaps

should not have been marked as “critical”; Microsoft had exactly the same bug but

marked it only as moderate.) In a similar study of Microsoft’s vulnerability report

response times, he notes that “In 2003, Microsoft took an average of three months

to issue patches for problems reported to them. In 2004, that time frame shot up to

134.5 days, a number that remained virtually unchanged in 2005.” Christian

Payne’s Information Systems Journal, Vol.12, Issue 1, February 2002, includes the

peer-reviewed paper “On the security of open source software” by Christian Payne

of Murdoch University (Perth, Australia). In it, Payne first summarizes the various

arguments made for and against open source software. He discusses some of the

arguments that FOSS is more secure, in particular, claims that the process of peer

review improves security, FOSS flexibility and freedom is a significant aid (e.g.,

organizations are free to audit FOSS, modify it to meet their security needs, and

rapidly patch OSS/FS without having to wait for a vendor), and that OSS/FS

projects tend to respond more quickly with security fixes. He also discusses some

of the arguments made against OSS!FS, such as claims that that vulnerabilities are

harder for attackers to fmd in proprietary programs (since the source code is not

available), and that there are flaws in the peer review argument (e.g., it may be

available but not necessarily reviewed). In short, there are different effects, and

21



it’s easy to have opinions about the strengths of those different effects. Without

measurement, it’s hard to know what effects are stronger. But Payne goes beyond a mere

summary of arguments, and actually works to try to gather quantitative data to measure

the effect of these alternative approaches. Payne devised a scoring system for measuring

security features, measuring reported security vulnerabilities, and then rolling those two

factors into a final score. He then applied this to two OSSIFS systems (Debian and

OpenBSD) and one proprietary system (Solaris, which at the time was proprietary); all

are Unix-based operating systems. Table 2.7: Security of OSS/FS (Wheeler, 2007)

OpenBSD had the most security features (features that support confidentiality, integrity,

availability, or audit), with Debian second and Solaris third. OpenBSD also had the

highest score for those features. In terms of vulnerabilities, OpenBSD had the fewest

reported vulnerabilities, and those vulnerabilities “were also relatively minor[,j only

rating an average of 4.19 out of 10”. Solaris, the proprietary system, had the largest

number of vulnerabilities. The final rolled-up score is quite intriguing: of the three

systems, the proprietary system had the worst security by this rolled-up measure.

The author correctly notes that these are only a few systems, using information taken at

only one point in time, so these results are “far from being final”. And the author

certainly does not take the view that any OSS/ES program is automatically more secure

than any proprietary alternative. Hiding the source code certainly did not reduce the

A BZ Research survey of 6,344 software development managers in April 2005

asked about the security of different popular enterprise operating environments;

OSS/FS did very well. Below are some of the results; the margin of error for the

survey is 2.5 percentage points, number of reported vulnerabilities, contrary to

some proprietary vendors’ claims; the proprietary system had the most

vulnerabilities reported about it.

Among server operating systems, there was uniform agreement that both Sun

Solaris and Linux were much more secure than Microsoft’s Windows Server

against operating system related attacks. When comparing Sun Solaris against

Linux by this measure, There was no consensus as to whether Sun Solaris or

22



Linux were better against operating system level attacks; more people ranked

Linux as “secure or very secure” compared to Sun Solaris, yet more people also

ranked Linux as “very insecure or insecure” than Sun Solaris.

Table 2.8: Comparing security of Windows, Linux and Solaris (Wheeler, 2007)

Windows Server also did poorly against application-related “hacks and exploits”:

Table 2.9: Comparing Windows to Linux (Wheeler, 2007)

number of reported vulnerabilities, contrary to some proprietary vendors’ claims;

the proprietary system had the most vulnerabilities reported about it.

A BZ Research survey of 6,344 software development managers in April 2005

asked about the security of different popular enterprise operating environments;

OSSIFS did very well. Below are some of the results; the margin of error for the

survey is 2.5 percentage points. Among server operating systems, there was

uniform agreement that both Sun Solaris and Linux were much more secure than

Microsoft’s Windows Server against operating system related attacks. When

comparing Sun Solaris against Linux by this measure, There was no consensus as

to whether Sun Solaris or Linux were better against operating system level attacks;

more people ranked Linux as “secure or very secure” compared to Sun Solaris, yet

more people also ranked Linux as “very insecure or insecure” than Sun Solaris.

Table 2.8: Comparing security of Windows, Linux and Solaris (Wheeler, 2007)

Windows Server also did poorly against application-related “hacks and exploits”:

Table 2.9: Comparing Windows to Linux (Wheeler, 2007)

Ms Windows Server Linux Sun Solaris

Very Insecure or Insecure 58% 6% 13%

Secure or very secure 30% 74% 66%

23



OSS/FS was also far ahead of proprietary programs in 4 of the 8 categories considered:

desktop/client operating systems (44% to 17%), Web servers (43% 14%), server

operating systems (38% to 22%), and components and libraries (34% Ic

18%). Results were essentially equal in three categories: desktop/client appi server

applications and application servers. Only in one area was proprietary software

considered more secure than OSS/FS, database servers (34% to 21%).

Security is notoriously hard to measure, and many reports that attempt to do so end up

with interesting information that’s hard to interpret or use. And some reports come frc”

sources whose reliability is widely questioned. On November 2, 2004, mi2g reported on

successful digital breaches against permanently connected computers worldwide. They

concluded that BSDs (which are usually FOSS) and Apple’s computers had the fewest

security breaches; on the surface, that sounds positive for FOSS. They also reported that

GNU/Linux systems had the most breaches, followed by Windows. That result sounds

mixed, but digging deeper it turns out that this ranking is artificial, based on artificial

definitions. Their default definition for a security breach only included manual attacks

and ignored maiware (viruses, worms, and Trojans). After all, why bother with a manual

attack when completely automated attacks against broad collections of computers will do

more? When they include malware in their calculations for all system breaches,

“including the impact of MyDoom, NetSky, SoBig, Klez and Sasser, Windows has

become the most breached computing environment in the world accounting for most of

the productivity losses associated with malware virus, worm and trojan - proliferation.”

Even without maiware, in governments “the most breached Operating System for online

systems has now become Windows (57.74%) followed by Linux (31.76%) and then BSD

and Mac OS X together (1.74%)” (a reversal of their previous rankings).

One of the most dangerous security problems with proprietary software is that if

intentionally malicious code is snuck into it, such code is extremely difficult to find. Few

proprietary vendors have other developers examine all code in great detail - their testing

processes are designed to catch mistakes (not malice) and often don’t look at the code at

all. In contrast, malicious code can be found by anyone when the source code is

publicly available, and with FOSS, there are incentives for arbitrary people to review it h

as to add new features or perform a security review of a product they intend to

24



use). Thus, someone inserting malicious code to an FOSS project runs a far greater risk

of detection. Here are two examples, one confirmed, one not confirmed:

Some time between 1992 and 1994, Borland inserted an intentional “back door” into their

database server, “InterBase”, as a secret username and fixed password. This back door

allowed any local or remote user to manipulate any database object and install arbitrary

programs, and in some cases could lead to controlling the machine as “root”. This

vulnerability stayed in the product for at least 6 years no one else could review the

product, and Borland had no incentive to remove the vulnerability. Then Borland released

its source code on July 2000 as an OSS/FS project. The “Firebird” project began working

with the source code, and uncovered this serious security problem with InterBase in

December 2000 (only 5 months after release). By January 2001 the CERT announced the

existence of this back door as CERT advisory CA-2001-01. Once this problem was found

by open source developers reviewing the code, it was patched quickly. Note that this

threat is unfortunately a credible threat to proprietary software, because very few of its

users can review the code. This is far less dangerous to FOSS software, due to the

worldwide review that’s possible (including the ability to see the changes made in each

version). (Wheeler, 2007) This chapter has looked at the review of previous works by

various authors prior to this research. We have clarified the terminologies used in this

research and discussed previous works on comparative studies on reliability,

performance, and security of both FOSS and Proprietary software respectively.

25



CHAPTER THREE

RESEARCH METHODOLOGY

3.0 hitroduct~on

This chapter presents a background against which data was gathered and analyzed

and reasons why those methods were chosen. The chapter provides a description

of research design, sources of data, data collection methods, as well as data

process and analysis.

3~1 Research Des~gn

The study adopted a descriptive research design that involved both quantitative

and non-quantitative primary/secondary data on the challenges of using FLOSS or

Proprietary software in Uganda. Basing on this data, comparisons are then made

between the software. This is consistent with the research objectives and questions

in chapter one.

3~2 Sources of Data

The data sources were basically primary and secondary. Secondary sources

included text books, journals, magazines, company records, seminar presentations,

articles from newspapers and internet. Primary sources included tests,

experiments, interviews and observations on ground.

3.3 Data Coflection Too’s

This research uses five methods for data collection that included the following

Interview method which involved face-to-face interaction with the respondents

and asking them questions in line with the research question. This method was

chosen because it was the most effective way for the researcher get a first-hand

26



account of the information on the study especially on the reliability, performance

and security of software.

Document review involved intensive researching and reading of different authors

of literature about the variables of the study. This method was used as an

additional source of information since the researcher could not get sufficient

information on the functionality of the software from the respondents especially

on comparing a wide range of software products. Observation and experiments

involved the use of the eyes to see the challenges and benefits in the current

system while also performing experimental tests the different software products

and their alternatives. This method was used to get a clear objective view of the

actual facts on ground especially at the case study.

3.4 Popullat~on of the Study

The following are categories of persons that participated in the above collection of

data that involved key informants or personalities and users who interact very

closely with the system and the organization: two ICT directors, two heads of

departments, two systems administrators, one IT manager, eight lab technicians,

four students and four other staff at the organizations as well as four people from

the public at these institutions. The size of the sample was 10- 15 person in each

institution.

3.5 Data Process~ng and Analysis

This was done by making references to the available literature in order to compare

and contrast different opinions as presented by different authors. These opinions

and quantitative data were then analyzed to arrive at the conclusions of the study

as is reflected later in the findings.

27



3.6 Data Ana~ys~s Tods

Statistical Package for Social Scientists (SPSS), a statistical data analysis software

tool; was used to process the quantitative data. Non-quantitative data was based on

opinions expressed by the respondents, observation and experiments, was

analyzed by comparison to achieve the conclusive results of the research.

Other tools used include: Hardware such as Laptops, Desktops, Server-ware,

Network Interface Card as well as Software like Mozilla Firefox, Internet

Explorer, Apache Web Server, Windows 2000, NT, 2003, XP and Vista, GNU-

Linux products like Red Hat, Fedora, SuSe, and XandrOS.

3,7 Data Presentat~on

The findings and the information in this study were presented by use of

quantitative and non-quantitative information through narration and providing the

statistical results from the experimental tests. This research studies the works of

other authors, discusses their opinions compares their analysis to the findings of

the research through the experiments, observations and interviews performed by

the researcher.

3.8 Um~tat~ons of the Study

Some respondents were not willing to disclose information especially about their core

servers for security reasons and company policy. This was a major problem in the

findings, as the researcher could not get sufficient information which could have gone a

long way to shed more light on the study. The research was also limited by lack of

equipment to use for experiments for instance acquiring a machine to crash so as to

acquire actual facts was not easy. The researcher could not also get source code to

experiment as most software available was not licensed. Also, the researcher had limited

finances especially in purchase of stationary, printing and transport costs. This was

28



solved by proper budgeting while putting all the above mentioned considerations in mind.

The time constraint was another limitation since the researcher had to study, teach and

give tests, while compiling this report. But this was solved by proper following of the

project time line. In this chapter, we have looked at the background against which data

was gathered and analyzed as well as the reasons why those methods were used. We also

provided a description of the research design, sources of data, data collection methods,

data processing and analysis.

29



CHAPTER FOUR

DATA ANALYSIS AND PRESENTATION OF RESULTS

4~O lntroductbn

This chapter analyzes interviews, observations and experiments carried out on the

software performance, reliability and security. The chapter will also describe the results

that were derived from the experiments and surveys. It also presents the information

extracted from data collected during the study and the analysis derived from the findings.

To make a comparative analysis of Open source software and proprietary software, an

experimental survey rating of both sets of software was used where people in the industry

were asked to give their opinion of each software, while sighting their reasons or each

rating. The people interviewed were chosen from a sample space of 15 persons per

institution. These people have spent 2 years or more in the ICT industry, working in key

positions relevant to the study question such as system administrators, network

administrators, instructors and lecturers, ICT directors plus 1 5 others from the public and

student community to get a view of how both software would perform on average among

those who are less informed about ICT. Test experiment was done by the researcher, on

Mozilla Firebox and Internet Explorer; and OS Windows Vista and Windows 2003, to

compare reliability, performance and security. These experiments were carried out to

allow for the objective comparative analysis of how both software would perform in

organizations and then finally compare he case study environment to the Industry

standards.

4~1 Results from the Survey

These results are based on users’ opinions which can be quite wrong, but opinion

poiis of large numbers of people who have every reason to know the facts can not

be ignored. This survey was carried out among many informed users who include

people that have worked in ICT for two or more years and the following are the

responses tallied to average for each software they have used over the years.

30



42 ReUabNity

Table 4.1: Reliability of FOSS as compared to proprietary software

OSSF/FS Rating (%) Proprietary Software Rating (%)

GNU Linux (server) 85 Windows 2003 server 75

GNULinux (client) 70 Windows XP 75

Apache Web Server 63 IIS 63

Mozilla Firefox 85 Internet Explorer 65

4~3 Software

In security, OSSIFS is the clear winner with better security features preferred by the user

as the researcher discovered. Proprietary only managed to as good as FOSS on the Web

server. Proprietary security features have improved as observed in the new Windows

releases like Windows Vista. However, OSS/FS have also improved and can be

customized to the user’s liking, which is one of the reasons it was still the most preferred

among the users.

4A Performance

Table 4.2: Performance of FOSS as compared to proprietary software

OSSIFS Rating (% Proprietary Software Rating (%)

GNULI nux (Server) 85 Windows 2003 server 75

GNU Linux (Client) 65 Windows XP 75

Apache Web Server 70 uS 60

Mozilla Firefox 83 Internet Explorer 65



4~4 Results from the Experñment

4.4.1 Reliabmty Measure

A common reliability metric is the number of software faults, usually expressed as faults

per thousand lines of code. The theory is that the software reliability increases as the

number of faults (or fault density) goes down. In this research, reliability is usually

measured by feeding programs with random characters and determining which programs

resisted crashing and freeze-ups. This approach is unlikely to find subtle failures, but can

still effectively find many errors in production software and is widely used for finding

software errors. Most applications failed the reliability test with FOSS doing better than

proprietary software as programs windows programs crashed more often. These

programs crash due to error in code or non-reliability.

4,4~2 Performance

In performance testing that is performed, from one perspective, to determine how

fast some aspect of a system performs under a particular workload. It can also

serve to validate and verif~’ other quality attributes of the system, such as

scalability and reliability. Performance benchmarks are very sensitive to the

assumptions and environment, so the best benchmark is one you set up yourself to

model your intended environment.

When performance was measured by checking the speed of the software, FOSS

was better than proprietary software. Internet Explorer (proprietary) was measured

against Mozila Firefox (FOSS) and we found out that web pages opened faster on

Mozilla than Internet Explorer. Similarly, SuSe (FOSS) was much faster than

Windows 2003 server (proprietary).

However, windows performed better in functions because it was more user

friendly than its counterparts (GNU/Linux) and it could easily work with other

software which made administration much easier.

32



4.4.3 Security Measure

Because security is hard to measure, it is often measured by a survey of opinions.

As mentioned earlier, opinions can be wrong but when collected from a large

sample space, how can these user’s opinions be ignored? For this measure refer to

the rating earlier reported in section 4.1.3 above where FOSS was found to be

better than FOSS.

When we applied a virus on Windows XP, it mal-functioned and had to be

restored immediately before its ultimate crash. Windows Vista crashed

immediately while Windows 2000 was affected by the virus but remained quite

stable. These results are really bad because Linux only treated the virus as a

program it was not compatible with. This goes to say how frustrating it is for

Windows users having to update anti-virus after another. Its not that Linux is not affected

by viruses but it is more immune to them.

4.5 The Case Study

Most organizations use both proprietary software and OSS/FS, while some use just one of

them in their day-to-day operations. Internet presence for most organizations has posed a

high degree of vulnerability to most of these organizations. UgandaDotNet was chosen as

case study to this research. The case study findings are presented in a parallel manner

with the results analysis that was done at the conclusion of this research. This allowed

comparisons between the experimental and observational results.

4.5.1 Uganda Dot Net

Uganda Dot Net was launched in 2008. Its mission is to ensure the involvement of

Ugandans in the development and use of open system software in Uganda, has been

advocating and training of Ugandans in software development. The company focuses on

33



training users in the use of OSS and offer support as the companies call them to train

their stuff. Though its worth noting that OSS has not taken off fully in Uganda. The

organizations are involved in software development such as web site development and

customized web applications, financial software corporate companies among others.

4.6 Results from Case Study Observation

The researcher observed that case studies were using FOSS and proprietary software.

This included software like Windows XP and Vista (proprietary); as well as ZandrOS,

Red Hat, Fedora and SuSe (FOSS) on the client side. On the server side, software used

included Suse (FOSS) as well as Windows 2000 server and Windows 2003 Server.

According to the findings, though both softwares were used, FOSS was placed at

the core of the system because of its better reliability, security, and performance over

proprietary software.

Also, for normal office operations, proprietary software was the most common sighting

its being more user friendly to new or uninformed users. However simpler OSS/FS were

competing favorably with proprietary with several users opting for Red Hat, Fedora,

SuSe, XandrOS, Knoppix among others that had better security and reliability than open

source.

Therefore, based on the observation, proprietary software was the preferred

software program on the desktop given its easy of use. But closely followed by

many OSSIFS products which in time will definitely out perform proprietary

software. On the other hand, OSSIFS was the better software on the server-side

given its better reliability and security features that can better protect a system

from intruders and viruses.

34



4.7 Results from Interview Guide

Most people interviewed have been working in ICT for 2 years to 15 years and

have used both OSSJFS such as GNU-Linux, Mozilla Firefox, Apache Web

Server; and Proprietary Software such as Windows XP, Vista, Opera, iTS, Internet

Explorer. Also interviewed were students, the public, and some company personnel that

were the researcher assumed were either not very informed about ICT and software in

general or they had spent a few days to a few months in ICT industry.

However, it was noted that 90% of these users had purchased licenses for any of these

software for a wide range of reasons. Organizations management were not willing to

spend money on these licenses claiming they are expensive. The means of payment was

also not easy as it has to be done via electronic payment which is also still virgin to the

country. The process of acquisition for proprietary software is limited to a particular

region which makes it expensive when one wants to add more computers

Most of these users intend to purchase these product licenses in future if for instance:

The product corporations open offices in the country. If the prices for these licenses are

lower. If the users can be allowed to freely distribute them beyond the specified regions

as in the case of proprietary software.

The researcher also discovered that most users do not know have sufficient information

about the benefits and challenges of running either licensed proprietary or Open Source

software. Never the less, it was found out that if more information was provided to the

users they would consider using the alternative software and even purchase the licenses.

It was also found out that most informed users do use both OSS/FS and proprietary

software. Proprietary software is used on desktop for users not familiar with OSS/FS

while on the server-side they implemented the OSS/FS because of its reliability,

performance and excellent security features. However, most of those that are not familiar

with ICT all use only proprietary software because it is more user-friendly. This is due to

lack of information on software benefits and skills that the public do not have.

Unfortunately, the government is not supportive of the initiative of educating people on

software use, and as was found out, any plans made have been shelved and await Non

35



governmental Organizations (NGOs) companies like UGANDA DOT NET,

among others to do this for them. This is frustrating for ICT because this is a big

project that needs government support not just a few NGOs.

This chapter has analyzed interviews, observations, surveys and experiments

carried out on the software performance, reliability and security. The chapter also

described the results derived from the experiments and surveys and presented the

information extracted from data collected during the study as well as the analysis

derived from the findings.

36



CHAPTER FIVE

DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.0 llntroductñon

This chapter concludes the research report and covers discussions about the

fmdings, conclusions drawn and offers recommendations of software to use for

specific user requirements based on the findings of the study as well as the

limitations and future areas of work related to this study.

5~2 D~scussñon

There are a lot of anecdotal stories that FOSS is more reliable, this research has

provided quantitative and non-quantitative data confirming that mature FOSS

programs are often more reliable.

Equivalent FOSS applications are more reliable than proprietary software

according Fuzz report that shows evidence that Windows applications have even

less reliability than the proprietary Unix software. Also, according total of 3 month

Swiss evaluation, the difference between Netscape (proprietary) and Apache

(FLOSS) is statistically insignificant.

IBM studies put Linux to a 10-month test and ran Caldera Systems OpenLinux,

Red Hat Linux, and Windows NT Server 4.0 with Service Pack 3 on duplicate

100MHz Pentium systems with 64MB of memory found GNU/Linux highly

reliable. The NT server crashed an average of once every six weeks yet none of

the Linux server ever went down.

37



In addition to that, German import company Heinz Tröber found Linux-based

desktops to be far more reliable than Windows desktops, where by Windows had a

15% daily failure rate, while Linux has 0%. On performance, FOSS has at least

shown that it’s often competitive, and in many circumstances it beats the

competition. In 2002, TPC-C database measures found that a Linux based system

was faster than a Windows 2000 based system. GNU/Linux with TUX has

produced better SPEC values than Windows/llS in several cases, even when given

inferior drive configurations.

GNU/Linux has better performance than Windows basing on their pipes (an

input/output mechanism), process and thread creation, according to a study that

examined the performance of pipes, a common low-level mechanism for

communicating between program processes.

Microsoft themselves found that two OSS/FS operating systems, Linux and

FreeBSD, had better performance than Windows by many measures according to a

report that compares their research prototype to Windows, Linux, and FreeBSD

exposing performance figures that compare these operating systems directly to

each other.

On comparing security, a number of attempts to do so, suggest that FOSS is often

superior to proprietary systems, at least in some cases. Unpatched Linux systems

last longer than unpatched Windows systems according to a combination of

studies from the Honeynet Project, AOL, Avantgarde and others and the Bugtraq

vulnerability database suggests that the least vulnerable OS is OSSIFS. All the

OSS/FS OSes in its study were less vulnerable than Windows in 1999-2000. On

responses to security problems, Red Hat (an OSSIFS vendor) responded more

rapidly than Microsoft or Sun to advisories.

38



A 2002 survey of developers found that GNU/Linux systems are relatively

immune from attacks from outsiders. Evans Data Corp.’s Spring 2002 Linux

Developer Survey surveyed over 400 GNU/Linux developers, and found that

Linux systems are relatively immune from attacks from outsiders.

Apache has a better security record than Microsoft’s lIS, as measured by reports of

serious vulnerabilities by Week’s July 20, 2001 article “Apache avoids most

security woes” which examined that Apache’s last serious security problem (one where

remote attackers could run arbitrary code on the server) was announced in January 1997.

The majority of the most serious security problems only apply to Microsoft’s products,

and not to FOSS products as suggested by the CERT/CC’s “most frequent, high-impact

types of security incidents and vulnerabilities” and the ICAT database. Computer viruses

are overwhelmingly more prevalent on Windows than any other system.

According to a June 2004 study by Sandvine, 80% of all spam is sent by infected

Windows PCs. National Cyber Security Alliance’s study of May 2003 reported that 91%

of Broadband users have spyware on their home computers running proprietary operating

systems. In contrast, there’s no evidence of that this is an issue for FOSS systems.

National Cyber Security Alliance’s study of May 2003 reported that 91% of Broadband

users have spyware on their home computers running proprietary operating systems. In

contrast, there’s no evidence of this issue for OSS/FS systems.

Microsoft has had far more vulnerabilities than anyone else, according to Security

Tracker Statistics paper (March 2002) that analyzed vulnerabilities from April 2001

through March 2002. In late June 2004, the U.S. Department of Homeland Security’s

Computer Emergency Readiness Team (CERT) recommended using browsers other than

Microsoft Corp.’s Internet Explorer (IE) for security reasons because Microsoft had

failed to patch a critical vulnerability for 9 months, and lE was being actively exploited in

horrendous ways.

According to Symantec Corp., Mozilla Firefox fixed its vulnerabilities faster, and had

fewer severe vulnerabilities (though more total vulnerabilities), in the July December

39



2004 period than Internet Explorer. More recent summaries as of August 2005 suggest

Internet Explorer is still more dangerous than the OSS/FS Firefox

Security Fix reported that 78% (284/365) of the time in 2006 Internet Explorer was

vulnerable to dangerous known attacks, for which no patch to fix it was available,

compared to 2% (9/365) for Mozilla Firefox as reported by Brian Kreb’s “Security Fix”

column compiled statistics on vulnerability response times, including those for Microsoft

Internet Explorer (IE) and Mozilla Firefox. Internet Explorer (IE) users are far more

likely to end up with a spyware-infected PC than Mozilla’s Firefox users.

Information Systems Journal (a peer-reviewed journal) published researcher Christian

Payne’s results, showing good evidence that OSS/FS can be secure. Information

Systems Journal, Vol.12, Issue 1, February 2002, includes the peer-reviewed paper “On

the security of open source software” by Christian Payne of Murdoch University (Perth,

Australia).

A BZ Research survey of 6,344 software development managers shows Linux superior to

Windows for operating system security attacks, and OSS/FS was in most categories

considered equal or better at the application layer. Also, a BZ Research survey of 6,344

software development managers shows Linux superior to Windows for operating system

security attacks, and OSS/FS was in most categories considered equal or better at the

application layer: Therefore, based on the above discussions, it makes sense to select the

most reliable product with the best security track record as well as better performance,

even if no product has a perfect record.

5.3 Condusion

The above observations are not merely opinions as these effects can be shown

quantitatively, using a wide variety of measures. Using the measures above, it was

discovered that Open Source Software is often the more reliable software, has better

performance and better security, perhaps due to the possibility of worldwide review.

Realizing these potential FOSS benefits may require approaching problems in a different

40



way. This will require an understanding of the differences between the proprietary and

FOSS models. FOSS products are not the best technical choice in all cases, even

organizations which strongly prefer FOSS generally have some sort of waiver process for

proprietary programs.

Before deploying any program one needs to evaluate how well it meets the user’s needs,

Vet most organizations do not know how to evacuate software programs n general,

specifically FOSS or proprietary software.

Therefore, its worth noting that most organizations are switching to FOSS because cost is

a significant factor driving adoption of open source software; control and flexibility are

considered benefits; Implementation of open solutions is evolutionary, not revolutionary;

Open source extends across the entire software stack and Product support is not a

significant concern.

However, most companies maintain the use of both software (OSS/FS and Proprietary)

because of they claim that though OSS/FS programs are more secure, reliable, perform

better than proprietary products but they are not user friendly. Users prefer to use OSS/FS

on the Server-side where security attacks are frequent and proprietary products on the

desktop.

Also interfacing some programs on OSS/FS to proprietary programs like Ms Windows is

quite frustrating for most users of proprietary products. So they prefer to exclusively use

proprietary products. Many FOSS programs aren’t available for Windows, or do not work

as well on Windows.

5~4 Recommendations

Based on the findings of this study with an edge of performance, reliability and security.

OSS/FS options should be carefully considered any time software or computer hardware

41



is needed. Organizations should ensure that their policies encourage, and not discourage,

examining OSSIFS approaches when they need software.

Many organizations are opting to computerize their operations to cope with the

competition in the business market by establishing ICT departments. To achieve their

objectives, special care and attention must be taken when purchasing software by

Objectively with knowledge about functionality of the solhvare choose the best

software to do the job effectively. Also, the government should endeavor to

support ICT training especially in OSS/FS so people can have a wider choice of

products to improve on their productivity and compete favorably not only within

the country but world-wide since its increasingly becoming a global village.

Those interested in trying out GNU/Linux operating system often start with a

simple CD that doesn’t touch their hard drive, such as Gnoppix or Knoppix, then

move on to various Linux distributions such as Red Hat (inexpensive Fedora Core

or professionally- supported Red Hat Enterprise Linux), Novell/SuSE, Mandriva

(formerly MandrakeSoft), or Ubuntu (nontechnical users may also be interested in

pay-per-month distributions like Linspire, while technically knowledgeable users

may be interested in distributions like Debian).

Users of Windows programs who are looking for soft~vare often try desktop

programs such as OpenOffice.org (OSS/FS office suite), Firefox (OSS/FS web

browser), and Thunderbird (OSSIFS mail browser). The OpenCD project creates

CDs that include those (and other) OSSIFS programs and Windows.

It must be noted that the software and standards that drive these ICTs into the

future can shape the country’s economy and even go a long way to influence who

is included or excluded. Therefore the choice of OSSIFS and proprietary software

42



is an issue whose importance goes far beyond the boundaries of the software

industry alone.

55 Areas for Future Stud~es

According to our findings, most users of proprietary software are hope to move to

OSS/FS or use both if more information was availed them. Also, there are several

reports from various users who have switched to FOSS from proprietary software

and a few who have moved to proprietary to FOSS. These moves often occur as a

result of user’s requirements and needs. The reason for the move from FOSS to

proprietary is that, users feel that FOSS is not user friendly and does not work well

with some proprietary software.

However, some users prefeffed to use both software in time. Most OSS/FOSS is

being made as user friendly as possible such that any one will be able to use

without prior training. UGANDA DOT NET is not taking any chances though as it

aims at making sure as many people get to know more about OSS/FOSS such that

users can make an informed choice when purchasing software. However, more

work is needed in this area to train users in the operation of this software.

Educational organizations have found OSS/FOSS software useful. KIU has moved

to more extended use of OSS/FOSS. Its hoped that more OSS/FOSS installations

will be implemented as they found out that the Linux systems are faster than their

machines enabling them to produce much higher quality results. They also use

Python extensively (an OSS/FS language), as well as a number of in-house and

proprietary tools.

43



2. Wikipedia. Free Encyclopedia. (2007, October) Open-source software

Website: http :/!en.wikipedia.org/wiki/Open-source software

3. Netcraft. (2007). Netcrafl Secure Server Suivey.

Website: http://uptime.netcraft.com/

4. Richard Gooch. (12 Nov 2006). The linux-kernel mailing list FAQ.

Website: http://www.tux.org/lkm 11

5. Standard Performance Evaluation Corporation. (2007). http://www.spec.org!

6. Week. Linux Watch. (October, 2007). 13 reasons why Linux should be on your

desktop.

Website:http://www.eweek.comlarticle2/

45


