CAUSES OF POOR PERFORMANCE IN MATHEMATICS IN SECONDARY SCHOOLSIN KIAMOKAMA DIVISION, MASABA SOUTH DISTRICT, KENYA
$B Y$

ALFRED OMAIYO MAIKO BED/42426/92/DF

A RESEARCH REPORT SUBMITTED TO THE UNSTITUTE
OF OPEN AND DISTANCE LEARNINGIN PARTIAL
FULFILLMENT FOR THE REQUIREMENTS OF THE AWARD OF BACHELORS DEGREE IN EDUCATION (SCIENCE) OF KAMPALA INTERNATIONAL UNIVERSTTY

DECLARATKN

I Alfred Omaigo Mako declare that this research project is my original work and has never been submitted for any academic and ard. Where the works of others have been cited acknowledgment has been made.

2010412011
Candidates name:
AlFRED OMAIYO MAIKO
$\mathrm{BLD} / 42426 / 92 / \mathrm{DI}$

APPROVAL

This research report is submitted for examination with my approval as the candidates University Supervisor.

DEDICATION

This report is dedicated to my lovel wife Rose Bisieri Nyamwame for her love and support to the family.

To all my chiden: Bahew ()maivo and Marvin Kirambokal Omaivo. I love you all.

ACKNOWLEDC:MENT

All praise is to the Amighty (iod for the giti of life. for the spiritual guidance protection and health in all my undertakings.

I do acknowledge the encouragement of those for encouraging me to join $k \operatorname{ll}$ to pursue this degree programme of which todal the completion of this report marks the beginning of a great academic achievement.

My research supervisor Mr. Mundu Mustalid. who worked tirelessly to ensure that this report gets to its apen. is duly acknowledged for good wow supervised.

I also do acknowledge the teaching staff of the seeondary school where I teach for heing co-operative with me and show ing team spirit in the school

Fo my academic and non-academic colleagues. my lamity friends are as well highly acknowiedged especially.

TABLE OF CONTENT

DHClARAIION i
APPROVAI ii
[D:D)](CAT]()N iii
ACKNOWIED(BMENT iv
TABLI: OF CONTENT ,
1.1ST ()H \triangle CRONYMS vii
I.ISTOF TABL.LS viii
ABS'RAC'T is
(11AP'lIR ONH 1
INTROH) (IION ।
1.0) ()vervien 1
I.I Background of the Study

1. Statement of the Problem $+$
1.2 Puppose of he Study $+$
1.3 Research ()bjectives $+$
1.4Rescarch Ouestions 4
1.5 scope of the study 5
1.6.Signilicance of the Stud! 5
(MAPTER TW() 7
RIVHW OF RIIATED IJTERATHRI: 7
2.0 (hapter ()verview 7
2.1 Theoretical framework 7
2.2 Factors That Ameets Sudent"s Performance in Mathematios 8
2.2.1. ()ver (ronded Classes 8
2.2.2. The Curriculam 9)
2.2.3 Poor School Infrastructure and Lack Instructional Materials 10
2.2.4 Students Have Few Incentives to Study 10
2.2.5 () uality of teachers ||
2.2.6 lacilities in Schools ||
2.2.7 Teacher's Athudes towards Students Performance in Nathematics. 12
2.3 Siudents Autitudes towards Mathematics 13
2.4 Gender and Academic Performance in Mathematies 15
CIMAPIER TIIREF 17
MIHODOLOCY 17
3.0 ()vervien 17
3.1 Research Design 17
3.2 Rescarch Population 17
3.3 Sample and Sampling Procedure 18
3.t Instruments of Data Collection 18
3.5 Research Procedure 19
3.6 Statistical Treatments of Data 19
(MAPTERFOUR 20
PRESIENTATION. INTERPRI:TATION ANI ANAI.YSIS OF IOATA 20
4.0 ()vervien 20
(IIAPTHR FIVI 32
1)LC(USSION. (ONCI.USION ANI)RI:(OMMINI)AIIONS 32
5.0 ()vervien 32
5.1 Diseussions 32
5.2 Conclusion 34
5.3 Recommendations 35
RUAFRINClS 36
APPI:NIIXA: (OIISTIONNAIRI: OMH:SHIHONIS 38

MAIH: mathematics

LIST OF TABLES

Table 4.1: Sex and age distribution of the respondents ... 20
Table 4.2: Class of the respondents ... 21
Table 4.3: Response on the number of mathematics teachers in our school 21
Table 4.4: Response on the qualification of mathematics leachers 22
Table 4.5: Response on the mathematics equipment students have 23
Table 4.6: Response on the praise avards .. 24
Table 4.7: Response on the factors that alfect student's performance in mathematics.... 25
Table 4.8: Response on Students Attitudes towards mathemation 20

Abstract

The major purpose of the study was to determine (iender mahematies concepts perception and its effects on academic performance of students in selected secondary schools in Kiamokama Division. Masaba Souh District, Kemal The specifie objectives of the study were to investigate the retationship between girl's athitude and performance in mathematics. Investigate the relationship between leachers attitudes and gits performance in mathematics. Determine the retationship between the curriculum and performance of gitls in mathematies. Determine the relationship between overeronded chasses and performance of girls in mathematics. The methods used for data collection were questionaires to the pupils and interviews with the teachers. The study revealed that fen girls enjoy mathematics because they think that mathematics is hard and meant for boys who are elever. The stuk found out that teachers attitude towards girls performanee in mathematics also affeced there perfomance. The study ahoo reseated that overcowded classes contributed to poor performance of girls in mathematics. Finally the study revealed that the curriculum was too heave for gits to handle and therefore performed poorly in mathematies. The govemmen should construe batilities at shood for mathematics teachers to teach in a conducive environment in order to aid the better performance of mathematics students in their sehools.

The governmen should have a poliey in place that encourages the taking up of mathematies subjee especially to the female students who at times think they are not good enough for the subject. The girl students should be encouraged to relate equally with there fellow boy students in all subjects regardless of wheder it is mathematios or

 now.
CHAPTER ONE

INTRODUCTION

1.0 Overview

This chapter shows the background of the study. problem statement purpose, objective. hypothesis. research questions. seope and signilicance of the study.

1.1 Background of the Study

The last decades of the wentieth century saw many concerted eforts in researeh into gender issues all over the world. In Arica. intemational bodies and educationalists began in the 1960 s to look into the way girls and women were faring in Bdacation. Their findings were depressing. By 1970s pro-female initiatives by some Africangoverments to encoumge entolment of girls in sehools were stated. Consequenty, low enoment ligures indicated in the earlier vears $(1900-70)$ were in the 1900 s shown 10 have improved. In Malawi statisties indicated that girls comprised 54% of the students enmed in 1900. an incrase from 4.8% in the previous years. While in \%ambia. Kenya and Nigeria Females constituted nearly 50% ol the chideren enrolled in grade one (IAWL: 1996).

For over wenty gears there has been concem about we lack of women in higher level mathematics and in careers for which mathematics was a prerequisite Fenmema and Sherman (1977) clamed that a lack ol mathematical background knowledge prevented women from entering a variely of oceupations. In Australia too. mathematics results are used as a critical hilter for higher education and future careers (Willis. 1995) and sex differences in participation remain a concem (cuttance. 1905: Barnes \& Home. 1096).

Over the last two decades in Australia there have been a number of government polies intiatives concerning the education of girls (Austatian Fducation Council. 1993). There hats also been renewed interest in the potential of single-sex en iromemes to cater more effectively for the needs of girls (Milligan \& Thomson. 1992).

Redressing the ciender Imbalance in mathematics athough there are several differing feminist theories they share an underying bond when redressing the gender imbatance in the teaching and learning of mathematics as part of a ghobl project of achieving educational and oceupational equity. Feminists of equality demand legat and actual equality between the sexes and identify the sexual division of labour as the main souree of women's oppression. They seek to redress imbalances from an intervention perspective amed at increasing the participation of women in mathematios and foeus on programmes aimed at remobilizing girls. (Watkerdine | 1985)

The interest in studying the relation between gender differences in spatial performance and mathematical performance lies in the reasoning that gender differences in mathematical abilities mediate those found on spatial tasks. For instance. in a classic study. Ityde. (eeiringer. and Y en (1975) demonstrated that gender differences on the rod-and-fiame test were eliminated (made no significant) when mathematical test performance was controlled statistically.

Voyer (149(a) presented data which put a diferent light on this area of research. This author demonstrated that a clear distinction had to be made between results obtaned with tests of mathematical abilities performed in a laboratory and measures of mathematical skills derived from classroom performanee. Specilicalls. Voyer (l99(a) hypohesized that mathematics performance was a suppresor variable in the relation... The secondary
school enrolment has risen to about seven million students (Ministry or basic liducation. 2005) hence the overcrowding. secondary students are taught by wachers who do not specialize in subjects during training that lasts two years after secondary education. In the schools. teachers take preference to teach subjects they fee they are strong in. The majority of teacher trainces at the (irade C plain are admitted to Teachers Colleges (ICs) either failed or performed poorly in mathematies at the Kenya Certificate of fdeation (UCE) examinations. This contrasts with the practice of selection of teachers in Canada who come from a strong pool of candidates (Wildeen \& Holborn. 1990).

In Kenya about 10% of the chiden like and are willing to study math. The rest have to be persuaded or forced to study mathematios becaluse it is compulsory in Republic of Kenya (1999). They have a completely negative attitude towards the subject (especially the girls). The main reason for these problems is that up to the late 1970s, nobody chose (1) ge to the university to study education as a profersion. The good mathematies students studied enginerring. medicine, accounting. or an! oher course but not teaching. Many of those who failed to meet the minimum requirements for their prefered careers became teachers. Such mathematies teachers lended to seare the learners to eover up their lack of conten knowledge and their inadequate preparation to teach the kessons. Saha 1.. I (1983).

Girls who participate well in mathematies are discriminated and men fear to marry them thinking thes are tough. Such attitudes have kead to poor performance of girts in mathematies and therefore there's need for the study we coar up such athendes. Currentl. no researeh has been carried out in the area in retation to identification. deserption.
selection and presentation of gender issue in the education sector during the teachinge learning process.

1.1 Statement of the Problem

Athough many scholars have shown interest in research work. a few of them have ventured into mathematic discipline. No special efforts have been made to determine gender and academic performance in mathematics. during the reform movements of 1960) in which there were major attempts to improve students learning of mathematics by changing the curriculum. very litte achievement was give to increasing for careers and therefore it calls for a number of assumptions in performance by gender due 10 some factors and hence need for the study.

1.2 Purpose of the Study

This study will deseribe the factors leading to the poor performance in mathematies in the selected schools in Kiamokama Division. Masaba Souh Diswrict. Kema.

1.3 Research Objectives

(i) Determine the factors that alfed students performance in mathematios
(ii) 10 detemine the students athtudes tumards mathematios
(iii) To determine the effect of gender on academic performance in mathematics

1.4 Research Questions

(i) What are the students attitudes towards mathematios?
(ii) What are the factors that affee studemes performance in mathematics?
(iii) How does gender aflect stodent sperfomances in mathematics?

1.5 Scope of the Study

The study will be carried out in Kiamokama Division. Masaba Souh District. Kenya. Academic performance in mathematics by gender in the rone will be detemined and described specifically in secondary sehools. All the above schools are gender mixed. The 7one has a population of approximately 104 TSC wachers. approximately 71 PA teachers all handing approximately 6000 students in secondary sehools only. The study will be undertaken between April 2011 and August 2011.

1.6 Significance of the Study

The study will benelit the following disciplines:

Provide information that can be used by the Ministry of lducation Policy Makers w identify atlitudes that can be associated more with high performance of girls in mathematios among students.

Enable Policy Makers provision for improving teaches quality with increased knowledge on the retationship between attitudes and achevement in mathematies of gints among students.

Inerease awareness of the I lead teachers. Board of (iovernors and Pl P and leachers on attitudes associated with high performance in mathematics by gender. The findings will be expected to assist teachers to adjust their methodohog of teaching to incorporate solutions to any shorteoming highlighted in the sudy.

In brief the mathematies teacher performance will be reviened, priority areas for improvement will be identified and improvement plan containing may be developed for each priority area.

The studies will give possible solutions to all education stakeholders to improve mathematics pertormance by gender.

Lastly the report is expected to form a basis for future researeh on related studies in or around the same are which is currenty not exhausted.

CHAPTER TWO
 REVIEW OF RELATED LITERATURE

2.0 Chapter Overview

This chapter shows the theoretical frame work, the factors affeting sudent's performance in mathematies. student's attitudes towards mathematies and the efeets of gender and performance in mathematics.

2.1 Theoretical Framework

The study will be based on the Atribution Theory by (Wemer 1972) which identilies a number of perceived causes or explamations of academic success. chatacteriad as internal, external. stable and matable (Anderson W.L 199|). These categories may be used to chatacterize the differen attributions of suceess and failure in terms of specific factors such as ability, task diflicults. ellom and luck. (Otieno. K 1907)

In mathematies participation and achievement for both males and Females attribution stye interacts with many other internal inflemees. such as conlidence, pereeption of the usefulness of mathematies and fear of stecess and greatly inflences them. (Barnes. It at (1984). looking at these components potentially oflers a valuabe insight into understanding why gender differences in mathematies oseur.

Confidence. Which has generally been aceepled as a beliel abou one's competence in mathematics. has been identified as one of the most important aflective variables (Reyes. 1984). influencing the students' approach to new material including a detemining lactor of their persistence. The studen will persist if confident of linding a solution or eventually gaining understanding: likewise. a confident studen is more hikely to
participate in mathematical courses at a higher level Fennema and Sheman (1976) produced the Fennema-Sherman mathematios Attitude Scales which measured confidence using a confidence subseale: they also measured the studens' mathematies achievement. Their results showed that when a gender diflerence in mathematics achevemen in favor of males was found. it was accompanied by a gender dillerence in contidence. also in favor of males. These gender differences in conlidence existed even when there were no differences in achievemen. I eder (1995) states that the weight of evidence in the US suggests that females are less confident than males about their mathematical ability and therefore less likely to persist on diflicult tasks. They are also more ambivalent about the value of mathematics as an oecupational prerequisite.

1ddowes (in Burton. 1986:23) and many others clamed that girls performance in spatial mask is significanty wose than that of boys. This theory too has been refued by researeles such as Walden and Walkerdine (1985:23): who examined this assumption and were unable to justify it. Likewise. Walden and walkerdine concluded that they coukd conlime assumptions by Wood (1976). For example. which argues that girls perform better al fower cognitive level mathemation tasks than at higher cognitive fevel mathematical tasks. and dismiss similar assumption relating to difering cognitive stak between the sexes.

2.2 Factors That Affects Student's Performance in Mathematies

2.2.1. Over Crowded Classes

Another factor for student's poor performance in mathematics is overcronded classes. The introduction of FSE has its own down sides. the issues that teachers pointed out in this study reinforce the challenges that teachers in the Nakabugo el al (2007). Certainly.
when teaching in large classes teachers provide fener exercises and practice so as to reduce the amount of marking to do. There is also limited space to conduct group wow that would enhance effective coverage of conten. This is true because the overcrowded curriculum minimises students opportunity-(t)-learn mathematics as teachers try to cover 100 much content in too little time avaikable. Nalkabugo et al. (2007).

2.2.2. The Curriculum

According to (arey et al (1994) even the development of curticulum designed to serve all students has perpetuated inequalities. One reason for this is that the developers have not considered what is known about how children learn mathematics with understanding. In some instances there has been little communiation between researehers in mainstream mathematics education. who have not been directly concerned with equity issues and equity researchers. who have nor been concerned with eritical mainstream researeh.s Bames. M. 199|). Before truly equitable classtomens can be developed. concerns about equity and knowtedge about children's leaning must be integrated. (arey et all (19)4) suggest a need for blending research on equity and children's learning. sating we knowledge gained using a cognitive science research paradign contributes to our understanding of learning in schools.

The nature of the curriculum and sylahus is one eritical evement for the opportunity-tolearn. The curriculum is overcrowded thes affecting opportunity-to-learn. Since the curriculum is too heavy the most teachers are not able to cover it adequately thus reducing the chances of the students to kean Otieno. K (1997). Athough teachers attempt to cover all the content of the syllabus, the frequent distuptions in the teaching time due to un-gazetted holidays. late start of the term and so on do not allow the completion of the
syllabus in most sehools. This result indeates that the conten of the syllabus may not all be relevant to the needs of the students either for their further education or use in real life. The content is then cosmetically cosered on the surlace to prepare stadents for examinations. The implication of this linding is that curteulum revien that is focussed on the needs of the society is necessary Bames. M. (190)). This is true because in most cases the teachers do not manage to complete the syllabus.

2.2.3 Poor School Infrastructure and Lack Instructional Materials

A large number of studies in the developing countries have consistenty shown that availability of instructional materials positively inflenees learner achievement: the levels of infrastructure seem to have a close corredation with leatner achevement and avalability of exthooks and instructional materials has a consistenty positive efleet on leamer achievement in developing countries (Ifeyremam Farnel and Sepulveda Stuando. 1991). Similar!. lockhed and Verspoor. 1991 found that school-hased interventions raise stukent achievement. The levels of infiastucture seem to have a elose correlation with learner achievement as one move from leas facility schools (bovinda and Varghese. 1993).

2.2.4 Students Have Few Incentives to Study

Most educators believe that as an ideal. all students should leam as much as their ability and effor will permit. Yet. most schools rewad high achievement alone apparenty assuming that the lure of high grades and test seores will inspire effort in all. Because high ability students ustally capture the best grades and test seores. the labor of lesstakented students is seldan acknowledged and the grades they receive for it do not inspire
eflort. Hence. low-ability students and those who are disadvantaged--students who must work hardest--have the least incentive to do so (iavin. M. K. (1997). They find this relationship between high effort and low grades unaceptable. something to be evaded if possible. Some of them express their displeasure by simple indifierence. others by distuption and deception

2.2.5 Quality of Teachers

Various writers have come up with viens abou the characteristics of compenent teachers and benefits of having such teachers as follows:

The Education Policy Review Commission Report (EPR(RR) (1989) explains teacher competence as having a knowledge of ehild development. of the material to be tateht and suitable methods, his skills must enable him to teach. adviee and guide his students. commonily and culture with which he is involved: his attitudes should be positive Without being aggessive. so that his examples are likely to be followed as he transmits explicitly, and implicitly the national aims and monal and social values.

Its from the above: give many characteristios and qualities. when effective teachers should posses. There are many students who perform well without teachers in some subjects while others with well-qualified teachers perform poorly. The researcher therefore ams at establishing the effect of teacher competence on academic performance of students in secondary schools.

2.2.6 Facilities in Schools

The success or failure of secondary schools is measured against the presence or absence of structures and facilities provision and management. Nsubuga (1977) holds the vien
that an important element of a good sehool is that of lacilities. Ite emphasizes that a good school should have adequate lacibities which help with teachers and students to effectively teach and effectively leam in a convenient and comfortable emvenment. According to Kochhar (2001) physical lacilities contribute a lot to the general amosphere of the sehool. He suggests that healthy sumoundings. good sanitary arangement leave lithe scope for irritation. Masaazi (1982) and Siskamwa (2000) agree that most programmes of instruction and pupil serviees reguire some physical facilities such as school building. school grounds. enough desks. chairs. teaching materials and libraries needed in instrution and incidental to institution. The possession of adequate facilities in the sehool for studying is a chatacteristic of an elfective shool.

However. there are many students who perform well in schools with limited lacilities and there are also many students who perform pooty in schools. which are well fachtated. The researcher therefore aims at carying out a critical analysis of the comection between academic performance and the avalability of facilites in secondary sehools.

2.2.7 Teacher's Attitudes towards Student's Performance in

Mathematics.

The personality of the teachers teaching mathematics is worying. The teathers have weak academic backgrounds on the mathematics content to deliver Bames. M.. \& Horne. M. (1996). Their own attitudes to mathematics maty contribute to their inability to motivate the students to learo mathematies. The waching methods that are used remain predominantly the traditional tatk and chalk' mode of delivery. The teachers are under pressure to enable their students pass examinations and are therefore forced to water down the implemented curriculum. Anderson W.I. (1991) Although teachers attempt to
cover all the content of the syllabus. the fiequent disruptions in the teaching time due to un-gazelted holidays. late start of the term and so on do not allow the completion of the syllabus in most schools. The characteristies of the students retard the pace of coverage of the content. R. Ndawula. R. \& Bbosa. I). (2017). The fact that fen students can not ellectively read and write by the time they are in class six or eight. which is the top class in the secondary school level. spells out problems of the ability to comprehend what is taught.

Teachers sometimes contribute to girls poor self-concept in mathematics. They mas imply. for example, that girls do not need mathematios or the may reat more negatively when girls ask questions of clarification than when boys ask (Jackson \& leflingwell. 1999)..Iones and Smant (1995) consider lack of confadence to be a major lactor allecting gits low participation in mathematics. This is true hecause most teachers show girts that they are not capable of passing mathematics and this diseourages them.

2.3 Stwents Attitudes towards Mathematics

According to Mel.eod (1992) Attitudes toward mathematics. including perceptions of how appropriate mathematies is for lemales play a prominent role in females lower performance and participation in mathematios in relation to mates. Based on their analysis of NAEP data trends. Bae. Choy. (ieddes, Sable and Snyder (2000) contend. "Achiesement gaps appear more closely related to attitudes than to course taking". The data show that females are less likely than mates to like or to think they were good at mathematics. Females also experience mathematics anxiety to a greater degree than males (1.evine. 1995).

Females dispositions toward-and hence achievement and participation inmathematios are believed to be socialized. inculeated by a society that tends to view mathematics as a male domain and which perpetuates the idea that males are naturally more mathematically inclined (Hansom. 1997). This is true because girls who do well in mathomatics are referted to as boys.
(iriftiths (1092). indicates that research carried out on 750 students at ldinburgh University between 1987 and 1991 showed that lemale students rated their own I(Qs lower than those of their fathers and. in three of the live years. higher than those of the mothers.(Amot. M. 1983).

Conversely. male students rated themselves superion to their mothers and. in three of hive years. 10 their fathers too. This suggests a widely aceepted belied that men are more intelligent than women. The issue is made worse by the fact that the women being tested. presumably the intellectual elite. should be more anate of gender issues and research, or at the very best. should be more confident of their own ability.

Meleod (1092) identifies thee ypes of component attitudes. emotions and beliefs relating to attitude to mathematies. Firstly. emotions are intense feelings. either positive or negative. which are evoked by a situation such as being confronted with a mathematic task. Secondly. are attitudes, which are predispositions to act in certain ways given certain concepts. ideas or situations? Attitudes can be held towards mathematics and include (according to Bell et all. 1983): I ikingdistiking of mathematics. Confidence (or lack of in own ability. ansiey lowards mathematies and pereeived wility of mathematics.

Thirdly, there are systems of ides or beliefs which reflect a person`s values and outlook. including beliefs about gender roles and the appropriateness of mathematics for men and women. (APU 1988). Some content that the importance of attitude tow ards mathematics is its comection to achievement: for example. Bell et all (1983) and Mcleod. (1992) found a low but significant cometation between these two factors - thus. more positive attitude may produce a higher level of achievement which is further compounded by gender. Research ambivalent. bowever. on the attitude - achievement link and there is much stronger argument that links athitudes to mathematics with liture participation. (Otieno. K 1997). I concur with the researchers that girls negative attitudes towards mathematies affeets their performance.

2.4 Gender and Academic Performance in Mathematics

Research on gender differences in academic achievemen offers educators of young adolescemts thought-provoking information on implications and guidance on specific directions to take. The accumblated literature on this topic covers students' confidence in kearning mathematics. sex-typed expectations for performance in mathematics and seience. seffeestimations of ability to kearn science and mathematios. "mathematios risktaking" behaviors. laboratory experiences for females. and participation in science fairs. In this review of literature the author pays particular attention to research that: W locuses on gender differences in mathematics and science achievement. and 2) oflers implications. for middle level school educators addressing young adoleseents' gender-specifie needs. Gender differences in academic self-concept have been a topic of research for several decades. Particular attention has been given to differences in mahematies self-concept: however. differences in verbal self-coneep and in mathematios and verbal selfeflicacy
have also been explored. One reason why gender differences in academic self-concept and selfeeflicacy are important is that these constructs are strongly related to academic achievement and a variety of motivational indicators (e.g.. Bong. 200): Byrne \& (avin. 1996: Goutried. 1990: Marsh \& Yeung. 1997: Muijs. 1997: Pajares \& Miller. 1994. 1995: Skinner. Wellborn. \& Comell. 1990: /immerman \& Kitsantas, 1999). Researd evidence strongly suggests that the relations between these constructs are reciprocal and that selfevaluations affect achievement more strongly with increasing age (Byrne \& Gavin. 1996: Skaalvik \& Hagtvet. 199): Wigheld \& Karpathian. 1991). (iender diferences in academic self-evaluation may therefore result in subsequent gender differences in academic achievement and motivation (Sax. 1994). Achievement in particular areas. such as mathematies and languge correlates higher with matching areas of self-concept than with general academic self-coneept (see overview by Marsh. 1993). Gender differences in selfeconcept should therefore be explored in particular adeademic sub domains. In this study we explored gender differences in self-perceived abilities and mosivation in mothematies and verbal arts.

In conchasion inadequate researeh has been conducted on gender and academic performance in mathematics and therefore this study seeks to contribute to this area of study.

CHAPTER THREE

METHODOLOGY

3.0 Overview

This chapter details with the methods the researeher will use to colleed data. Specilically. the researeh design. specific environment of the study. Fespondents involved in the stud. research instruments. data collection procedures and statistical treatment of data.

3.1 Research Design

the eesearch will employ a deseriptive research design the descriptive design has an advantage of being exhaustive. This is because it permits the researcher to gather comprehensive. systematic and in-depth information about each case of interest patton (990). Young (1956) pointed out that exhanstive studies describe aceuraty the relationship of variables and process recommended the qualitative nature of the deseriptive case study in terms of being exhamise. It yields rich data using interviens and questionnaires. Relevant office will be visited and a questionaire plus an intervien form will be used to collect the data. Fixel computer Programme and Microsolt word will be used in data processing. Microsolt will he used in typing.

3.2 Research Population

The research will be carried out in Kiamokama Division. Masaba Soulh District. Kensa The case study is selected because that is where the researcher lives and therefore it will be made casy to get information from the respondents. The costs of researeh will also reduce that in the researcher will need to take len mips. The selected subjeet has in the recent past showed poor results by gender hence need for the study. The researcher
teaches mathematies in one secondary mixed gender sehool and wants to explore its performance by gender.

3.3 Sample and Sampling Procedure

The study will involve selected teachers and students both male and female in private and public secondary schools to represen the others one QASO representing curriculum developer. 5 head teachers to represent public schools 2 head teachers to represent private secondary sehools. 20 public secondary sehool teachers. 8 privale secondary school teachers and 60 :20 public to private sehool students. A sample random technique will be used to get the best possible results. This type is useful because it ensure that all sehools and respondents stand an equal chance of being picked. The selected sehools. wachers. education officials. management and students will represent others in the zone. The identified respondents will participate in filling questionnaires. In case purpose method of selecting teachers and students indicate gender biasness. random method will be use per class for students and subject teachers will be involved to get the random sample for the leachers.

3.4 Instruments of Data Collection

The instruments of the study will include: interviens with the teachers and questionnaifes 10 students of which the teachers will help the students in lilling them. There will be four sets of questionnaires for the study. for (QASO) head teachers. subjeet teachers and students. Face to face interviens will be administered. Interviens are more flexible in that an interviewee can adapt to the situation and get as much information as possible (Mugenda and Muganda. 2003).

3.5 Research Procedure

A leter of introduction will be picked from the University and this will help in a way that the interviewees will give the researeher information.

The researcher will then take the leter (o) ()ASO) chamber fone who will recommend for further assistance in the sampled schools the researcher will personally deliver the questionnaires from the first week of May 200). Mean while a pre-lest of questionnaires will be made at school where the researeher is currently teaching. Comments and suggestions maybe by the respondents will be considered and in corporate.

3.6 Statistical Treatments of Data

The frequency and percentage will be used to determine the number of sample respondents that will participate in the study and the number that will participate positively in the research.

Descriptive and inferential techniques will be used to analye data. Specifically the student's sample l-test will be used to describe the impaet ol gender on academic performance in mathematies. Deseriptive technique like the mean and standard deviation will be used to describe respondents and other questionnaire responses. The researcher "ill then analye the response to all questions and intervien guide. This will be done manually using a coding scheme where all variables and responses are assigned numerical values to easy tabulation and analysis. Io permit gualitative analysis. data will be coded and treated statisticalls. using descriptive and inferential wechiques such as percentage. means and frequency presented through tables.

CHAPTER FOUR

PRESENTATION, INTERPRETATION AND ANALYSIS OF DATA

4.0 Overview

This chapter is a presentation, interpretation and discussion of the held results. The results are presented in tables and in form of frequency counts and percentages. The results and discussions are centered on the sel objectives of the study.

4.1 Profile of the Respondents

Table 4.1: Sex and age distribution of the respondents

Response	Firequency	Pereentage (\%)
Age		
12 yrs and betow	30	33.3
$13-15$ yrs	40	44.4
16 and above	20	22.2
Total	90	100
Sex	Response	Percentage
Female	+0	+4
Male	35	39
Noresponse	1.5	17
Total	90	100

Table 4.1 shows that sex and age of the respondents for both boys and girls and from both private and public school. 44% or the respondents indicated that were female while 39% of the respondents were male and 17% of the respondents did not indicate whether the: were male or female and others the responses were not clar. Then 33.3% of the
respondents were between the age of II years and below while 44.4% were between the age of $12-15$ years and 22.2% of the respondents were of the age backet of 16 years and above.

Table 4.2: Class of the respondents

Class	Frequency	Percentage
Form one	25	28
Form two	35	39
Form three	30	33.3
Total	90	100

The class of the respondents was divided into three categories that are Form one. form wo and form three levels. 28% of the respondents were in standard six. 39% were in standard seven and 3.3% of the respondents were in standard eight.

The respondents were asked the number of mathematies teachers they have in their school and belon was their response

Table 4.3: Response on the number of mathematics teachers in our school

Number of teachers	lrequency	Percentage (\%)
One teacher	50	50
Three teachers	25	28
Five teachers	7	7
Over six teachers	5	6
No teachers	3	3
Total	90	100

The table above indicates that 56% of the respondents said that they have one mathematics teacher. 28% said they have thre teachers. 7% said they have five teachers while 6% said they have more than six teachers and 3% of the respondents revealed that they do not have mathematics teachers. The students added that some of these teachers call themselves mathematic teachers but they are not qualified in the subject.

The respondents were asked the qualifieation of their mathematic teachers and this was their response

Table 4.t: Response on the qualification of mathematies teachers

Qualification	Frequency	Percentage (\%)
Fom four leaver	3	4
Certificate	10	13
Diploma	21	26
Degree	33	+1
Non response	1.3	16
Tonal	80	100

Table 4.4 indicates that most of the respondents that is 41% revealed that their mathematics teachers were of degree bevel. 26% said that the were of diploma level. 16% did not respond this means that they do not know the qualification of he teachers while 1.3% revealed that their teachers were of certificate level and 4% said that they were of form four leavers. This means that most of the mathematics teachers in these schools were of degree level.

In the interviews held with the teachers and the head wachers they revealed that most of these teachers are degre holders and those with diplomas and certificates were to going
to up grade their level. They revealed that if the teachers are well gualified they can use effective methods to teach students and make them understand.

According to the liducation Policy Revien Commission Report (I:PR(R) (1989) explains wacher competence as having a knowledge of child development. of the material to be taught and suitable methods. his skills must enable him to teach. advice and guide his students . community and culture with which he is involved: his attitudes should be positive withou being aggressive. so that his examples are likely to be followed as he transmits explicity. and implicitly the national aims and moral and social values.

The respondents were asked what mathematics equipment do they have and below was their response

Table 4.5: Response on the mathemalics equipment students have

Equipment	Firequeney	Percentage (\%)
Cieometrical set	4.5	56
Calcubator	20	25
Commers	8	10
Others	7	9
Total	80	100

Table 4.5 shows that 56% of the respondents revealed that they have geometrical sets as mathematics equipment. 25% said that they have calculators while 10% said that they have counters and 9% of the respondents said that they have other equipments apart from the mentioned ones. This implies that most of the students in sehools have geometrical sets as mathematics equipment.

The teachers and head teachers revealed that most students have sets just hecause it is compulsory that every pupil should have a geometry set and that it is the most important of all since even low classes can use it and being cheap every parent can afford to buy it. There fore it can in one way or the other be a facility that enables students performs well in mathematics.

Nsubuga (1977) holds the vien that an important element of a good school is that of facilities. He emphasizes that a good school should have adequate facilities which help with teachers and students to effectively teach and elfectively learn in a convenient and comfortable environment.

The respondents were asked whether the school has any mathematic praise awards to those who perform well and this was their response

Table 4.6: Response on the praise awards

Response	Prequenc!	Percentage (\%)
Yes	60	75
No	20	25
Tinal	80	100

According to table $4.6 .75 \%$ of the respondents agreed that their schools have mathematies praise awards for students who perform well while 25% of the respondents disagreed. This means that most schools award best performing students.

When the teachers and head teachers were interviewed them most of them revealed that they praise awards for students who perform well in every subject. They added that this bring competition among students thus resulting in better performance as evers pupil will
be competing for the praise. Head teachers and teachers of schools that do not award students revealed they do not have money to buy awards every tem but this does not mean that students perform poorly. They also revealed that students are abtarded with mathematics equipments like sets. calculators and text books. This is so because these awards still contribute or help students in the subjects and hence perform well.

4.2 Factors That Affects Student's Performance in Mathematics

The lirst research objective of the study was to determine the betors that affeet students. performance in mathematics. To achieve this. respondents were asked questions related to the objective. Data collected was analyed under the question: What are the factors that afeet student s performance in mathematies". The results are presented below:

Table 4.7: Response on the factors that affect student's performance in mathematies

No.	Jems	Strongly agre	Agree	Strongly disagree	Disagree	Total
1	Sudents lail mathematios because of overerowded classes	2900	+2\%	11.100	18\%	1010%
2.	The curiculum contributes to student's poor performance in math.	28\%	28\%	22.2\%	22.2\%	100%
3.	Poor School infrastructure such as building and fumiture lead 10 students poor performance	33.3\%	44.4\%	8\%	14.4\%	100%
4.	Lack instructional materials such as textbooks lead to poor performance in mathematics	50\%	33.3\%	6\%	11.1\%	$1000^{0} 0$

The quality of teachers $56 \% \quad 39 \%$ - $6 \% \quad 100 \%$ motivates to pupil and hence performance well in math

Adequate school facilities $33.3 \% \quad 3+.4 \% \quad 1+.4 \% \quad 18 \% \quad 100 \%$ contribute 10 students performance in math

7 Teacher`s attitudes towards $48 \% \quad 24.4 \% \quad 9 \% \quad 19 \% \quad 100 \%$ student's in regards to mathematics affect their performance.

According to the table 29% of the respondents strongly agreed that Students fail mathematics because of overcrowded classes. 42% agreed while 11.1% strongls disagred and 18% of the respondents disagreed.

28\% of the respondents strongly agreed that the curriculum contributes to students poor performance in math.. 28% agreed. 22.2% strongly disagreed and 22.2% of the respondents disagreed.
3.3% of the respondents strongly agreed that Poor School infrastructure such as building and furniture lead to student's poor performance. 44.4% agreed while 8% strongly disagreed and 14.4% disagreed.
50% of the respondents strongly agreed that lack instructional materials such as textbooks lead to poor performance in math. 33.3% agreed while 6% strongly disagreed and 11.1% of the respondents disigered.
56% of the respondents strongly agreed that the quality of teachers motivates to pupil and hence performance well in math. 39% agreed while 6% of the respondents disagreed.
33.3% of the respondents strongly agreed that adequate school facilities contribute to students performance in math. 34.4% agreed. 14.4% strongly disagreed and 18% of the respondents disagreed.
48% of the respondents strongly agreed that leacher's attitudes lowards students especially the girls in regards to mathematics affeet their performance. 24.4% agreed While 9% strongly disagreed and 19% of the respondents disagreed

The information gathered from the teachers showed that their work was alfected by overcrowded elassrooms. The overcrowding large classes results from the FSE policy on education has lead to classes of over 80 students which result in indiseipline problems. overloaded teachers and a resources constrained enviromment where there are inadequate resources such as suitable textbooks and a high pupil to teacher ratio. The class size automatically gives much worktoad to the teachers to prepare lessons. teach them and mark assigned work ir any

About half the teachers reported that the nature of the syllabus and the curriculum that is followed is overhurdened. overcrowded with topics and congested. According to the teachers with the loaded curriculum coupled with the athitudes of gitls towards mathematics lead to poor performance in math.

The teachers also revealed that Poor School infrastructure such as building and furniture lead to students ${ }^{\circ}$ poor performance. lack instruetional materials such as textbooks lead too poor performance.

Aecording to the study qualified teachers know how to teach well and hnow the effective methods to use to make students understand what they are taugh. The study revealed that unqualified teachers sometimes have negative attitudes towards students especially
towards the gits and this affects their performance. The teachers further reveated that if their adequate school facilities like a well stocked library. students are in position to perrom well.

According to Nakabugo et al. (2(0)7). there is also limited space to conduct group work that would enhance effective coverage of content. This is true because the overcrowded curriculum minmises students opportunity-to-learn mathematics as teachers try to cover too much content in too little time available.

The nature of the curriculum and syllabus is one critical element for the opportunity-tolearn. The curriculum is overcrowded thus affecting opportunity-to-learn. Since the curriculum is too heavy the most teachers are not able to cover it adequately thus reducing the chances of the students to learn Otieno. K (1997).

Also according to (Govinda and Varghese. 1993), the levels of infrastructure seem to have a close corelation with learner achievement as one move from keas facility sehouls Nsubuga (1977) holds the vien that an important element of a good sehool is that of facilities. He emphasizes that a good sehool should have adequate facilities which help with teachers and students to effectively teach and effectively leam in a convenient and comfortable enviromment.

According to Kochar (2001) physical facilities contribute a lot to the general atmosphere of the school. He suggests that healthy surroundings good sanitary arrangement leave litle scope for irritation. Musaazi (1982) and Ssekamwa (2000) agree that most programmes of instruction and pupil services require some phasical facilities such as school building. school grounds. enough desks. chairs. teaching materials and laboratories needed in instruction and incidental to institution. The possession of
adequate facilities in the school for study ing is a characteristic of an elfective school.

4.3 Students Attitudes towards Mathematics

The second research objective of the study was wo determine the attitudes of girls and boy towards mathematics. To achieve this. respondents were asked questions related to the objective. Data collected was analyzed under the question: What are the attitudes of boys and girls towards mathematics"? The results are presented below:

Table 4.8: Response on Students Attitudes towards mathematics

No	lems	Strongly Agree	Agree	Strongly Disagre	Disagree	Total
I	(iirts believe that mathematics is meant for	33.3\%	30%	11.1\%	17\%	100%
	boys					
2.	Giats think that they are not	28\%		17\%	22\%	100\%
	good in mathematics		33\%			
3.	Girls naturally hate					100%
	mathematics	. 39%	4.4\%	7\%	10\%	
4.	Boys helieve that they are	47\%				100\%
	more intelligent than gitls		+2.2\%	6\%	6\%	

According to the table 33.3% of the respondents strongly agreed that girls believe that mathematics is meant for boys. 39% agreed while 11.1% strongly disagreed and 17% of the respondems disagreed.
28% of the respondents strongly agreed that (iirls think that they are not good at mathematics. 33% agreed. 17% strongly disagreed and 22% of the respondents disagreed.
39% of the respondents strongly agreed that (iims maturally hate mathematics. 44.4% agreed while 7% strongly disagreed and 10% disagreed.
$+7 \%$ of the respondents strongly agreed that boys believe that they are more intelligent than girls that's they pass mathematics. 42.2% agreed while 6% strongly disagreed and 6 \% of the respondents disagreed.

According the teachers the reason why girls do not like mathematics is that they think you have to work hard to pass it and according to them they think the subject is for the boys and they naturally hate mathematios so with this they ahays negled it and some miss the lesson hence ending up performing poorly. The teachers also revealed that the boys believe that they are more intelligent than gits so to prove this they have to perform better than them that is why they concentrate ahays attentive and do not miss classes hence leading to their better performance.

According to Mel eod (1992) Attitudes toward mathematics. including perceptions of how appropriate mathomatics is for Females, play a prominent role in Females bower performance and participation in mathematies in retation to males. Based on their analysis of NAIFP data trends. Bale. Choy. (ieddes. Sable and Snyder (2000) contend. "Achievement gaps appear more closely related to attitudes than to course taking". The
data show that females are less likely than mates to like or to think they were good at mathematics. Females also experience mathematics anxiety to a greater degree than males (Levine, 1995).

According to Arnot. M. 1983). conversely. male students rated themselves superior to their mothers and. in three of five years. to their fathers too. This suggests a widely acepted belief that men are more intelligent than women.

CHAPTER FIVE

DISCUSSION, CONCLUSION AND RECOMMENDATIONS

5.0 Overview

The major purpose of the study was to detemine the factors affecting academic performance of students in mathematies in Kiamokama Division. Masaba South District. Kenya. This chapter focuses on the discussions of the findings. conclusions and recommendations. Finally, the chapter ends with suggestions for further research.

5.1 Discussions

The first research objective was to determine the factors that affeet students performance in mathematics. The study revealed that overerowding large class that results from the FSE affee students performance and nature of the syllabus and the curriculum that is followed is overburdened. overerowded with topics and congested. The study also revealed that Poor School infrastructure such as building and limiture lead to students. poor perlomance, Lack instructional materials such as texbooks tead too poor performance. Lack of well trained and qualified wathers and lack of adequate sehool facilities such as well stocked library lead to poor performance among students. The study also revealed that some teachers have negative attitudes towards students especially the girls in mathematies and therefore girls tend to hate the subject and hence poor performance

This is supported by Nakabugo et al. (2007). There is also limited space to conduct group work that would enhance effective coverage of content. This is true because the
overcronded curriculum minimises students opportumity-to-karn mathematics as teachers try to cover too much content in too little time available.

The nature of the curriculum and syllabus is one critical element for the opportunity-tolearn. The curriculum is overcowded thus alfecting opportunity-to-farn. Since the curriculum is 100 heavy the most teachers are not able to cover it adequately thus reducing the chances of the students to learn (Otieno. K (1997).

Also according to (Govinda and Varghese. 1993). the levels of infrastructure seem 10 have a close correlation with Jearner achievemen as one move from least facility sehools The second objective of the study was to determine the attitudes of girls and boy towards mathematies and according to the study the attudes girls have towards mathematics contributes to poor performance. The study revealed that lew girls enjoy mathematics because they think that mathematics is hard and meant for boys who are clever. The study also tevealed that (iinds naturally hate mathematis and boys believe that they are superion to girls. and this is supported by Mel cod. (1992) a more positive attitude may produce a higher level of achievement. which is further compounded by gender. Also based on their analysis of NAEP data trends. Bae. Chos. (ieddes. Sable and Sonver (2000) contend. "Achievement gaps appear more closely related to atitudes than to course taking". The data show that females are less likely than males to like or to think they were good at mathematics. Females also experience mathematics anxiety to a greater degree than males (1 evine. 1995).

According to Arnot. M. 1983). conversely. mate students rated themselves superior to their mothers and. in three of live years, to their lathers too. This suggests a widely accepted belief that men are more intelligen than women.

The third objective of the study was to determine the factors that motivate girls and bous to learn mathematics. The study established that:

5.2 Conclusion

The major purpose of the study was to determine the bactors affecting gender and academic performance of students in mathematics in Kiamokama Division. Masaba South District. Kenya.

The study revealed that overerowding large classes. the nature of the sylabus and the curriculum that is followed is overburdened overerowded with topies and congested. The study also revealed that Poor School infrastructure such as building and furniture lead to students poor performance. Lack instructional materials such as textbooks lead too proor performance. Lack of well trained and qualified teachers and back of adequate sehool facilities such as well stocked library kad to poor performance among students. The study also revealed that some teachers have negative attitudes towards students especially the girts in mathematics and therefore gits tend to hate the subject and hence poor performance

The study revealed that girls attitudes towards mathematics contributes to their poor performance in math. The study revealed that fen gints enjoy mathematies because they think that mathematics is hard and mean for boys who are elever. The study also revealed that Girls naturally hate mathematies and boys believe that they are superior to girls.

5.3 Recommendations

* The govermment should construct lacilities a school for mathematics teachers to teach in a conducive environment in order to aid the better performance of mathematics students in their schools.

A The government should have a policy in place that encourages the taking up of mathematics subject especially to the female students who at times think they are not good enough for the subject

A The girl students should be encouraged to relate equally with there lellow boy students in all subjeets regardess of whether it is mathematics or not.

A The community should be sensitized to encourage the sending of girls to school so that they get equal access to education.

* Trained and qualified teachers should be employed and they should not have a negative attitude towards students especially the girls.

REFERENCES

Femema. L... \& Sherman. I. (1977). Sex-related differences in mathematics achievement. spatial visualization. and affective factors. American Educational Researeh. Journal. It. 51-71.
[FAWE: 1995). ABC of Gender Analysis prepared by Wanjiku Mukabi Kabira and Masheti Masinjila for the Forum for African women Educationalists Willis. S. (1995). Gender justice and the mathematics curriculum: Four perspectives. In: 1.. Parker. I., Rennie and B. Fraser (eds.). (ienders. Scienter and mathematies Shorening the Shadew (pp. +1-51). Dordecht: Klumer.

Hanson. K. (1992). Teaching mathematics effectively end equitably w females. Trends and issmes No. 17. New York: Columbia University. Teachers College. BRIC Document Reproduction Service

Arnot. M.. M. David and (. Weiner (1989). Edncational reforms and gremer equation in schools. Manchester: Equal Opportunities Commission. Research Diseussion I

APU(1988). Atitudes and (iender Difference. NFIR-Nelsom
Armstrong. J. (1985). A National Assesment of Participation and Achicvement of Women in mathematics, In S. Chipman. I. Brush and D. Wilson (eds.). Women and mathematics: Balancing the Equation (pp. 59-94). Itillsdale. N.I: E.thaum. vears of teaching experience and Gender to perceived burn out amone sec. School leachers in Nairobi. (Inpublished M.İ.1) thesis.

Kenyatta Universily

Bames. M. (1991). An Introduction into Investigating Change in Australian Schools. Melbournc. Curriculam Corporation.
 Funtre." Resources in Education. ERIC: August. 1902

Ministry of Education and sports (2000) Educaton statistics. A handbook. Nairohi.
FAWE(K)

Gavin. M. K. (1997). A gender study ol students with high mathematics ability:
Personologieal educational and parental influences on the intent to pursue quantitative lields of study in college

Dockury. J. et al (1980) (onmoland)ixcipline in sehool. New York. Harper and Row Publishers

Musami I. (1982) The Theory and Pracice of liducaton Admimistration. I. ondon.

Macmillan

Bames M. and M lloms (1996). (iender and mathematic. Reseereh in mathematies

Eikhucation in Amstralasia

APPENDIX A: QUESTIONNAIRE TO THE STUDENTS

1. Personal information

Age
12 yrs and below |
1.3-15yss | 1

16 and above []

Sex
Female \| \mid Male []

Class
$4 \mid 1$
$5 \mid 1$
011
711
811

Parent's educational level

Belon class $8 \mid 1 \quad$ class 8 graduates | |
Below fom $4 \mid 1 \quad$ form 4 graduates $\mid 1$
Tertary college | I Iniversity graduate \|

Number of mathematics teachers in your school
$1 \mid 1$
$21 \mid$
$3 \mid 1$
41
5-71
over 811
no Leachers -

Which is the qualification of your mathematies leachers'?
Form four leaver [] degree [\| none \| \|

Which mathematies equipment do you have'?
Gometrical set [calculator \| \| counters \| others \| |

Does the school have any mathematics praise award?
Yesil Noll

Factors that affects student's performance in mathematies

Students lail mathematics because of overcrowded classes
The curticulum contributes to student's poor performance in mathematics
Poor School infrastructure such as building and furniture lead to students poor perlomance

Lack instructional materials such as textbooks lead to poor performance in mathematics The quality of teachers motivates to pupil and hence performance well in mathematies Adeguate sehool facilities contribute to students perfomance in mathematics Teacher's athtudes mands students in regads to mathematies aftee their performance

Students Attitudes towards mathematies

Gids believe that mathematies is meant for hoys
Girls think that they are not good at mathematics
Gifls maturally hate mathematios
Boys believe that they are more intelligent than girls that's why they pass mathematics

