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ABSTRACT 

The development of effective spellcheckers for Kiswahili, such as the JAMBO SPELL CHECKER 

(2004), has marked significant progress; however, a noticeable research gap persists in the field of 

non-word error detection and correction systems tailored specifically for the Kiswahili language. 

This study addresses this gap by proposing and implementing enhanced models, SwaDetect and 

SwaCorrect, designed to adeptly detect and rectify non-word errors in Kiswahili. With a focus on 

addressing limitations in scope, speed, and accuracy prevalent in existing solutions, our research 

aims to pioneer a more comprehensive and efficient system for non-word error detection and 

correction in Kiswahili. Notably, experimental results demonstrate SwaDetect's exceptional 

accuracy of 99% in Kiswahili word detection, operating at a processing speed of 65 Hz (65 words 

per second), while SwaCorrect proficiently corrects erroneous words with an average accuracy of 

82% for Edit Distance One (ED1) through ED3, maintaining an overall correction speed of 58 Hz 

(58 words per second). Our study encapsulates the development of models crucial for advancing 

the accuracy and speed of non-word error detection and correction systems dedicated to the 

Kiswahili language. 
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1 CHAPTER ONE: INTRODUCTION 

The impact of information technology tools on human life is undeniable, as they greatly 

simplify and accelerate task completion while reducing manual efforts. One area where this 

impact is particularly notable is Natural Language Processing (Adeyanju&Adewole, 2013). 

NLP, sometimes referred as Computational Linguistics in the Arts domain, is a subfield of 

Artificial Intelligence, which in turn is a subfield of Computer Science.  NLP focuses on 

enabling computers to read, understand, and extract meaning from Human or Natural 

Languages. Over the years, one of the aspects in which NLP has been involved is Spelling Error 

Detection and Correction, which dates to the 1960s. Now, spelling and lexical checking 

components are integrated into many applications, such as word processing software, email and 

web browsers, among others, making them a vital writing aiding tool. Spell checkers are 

computer applications that identify misspellings in text by using dictionary lookup technique, 

whose dictionary or lexicon comprises of accepted words in the language in question. 

Numerous commercial and non-commercial spell checkers and correctors, including Microsoft 

Spell Checker, Unix Spell, GNU's Spell, as well as A Spell and their variants, have been 

developed, however, there is hardly any such advanced tool or system for the Bantu Languages, 

such as Kiswahili, which is a widely spoken language in East Africa by hundred and thirsty 

million (130,000) people over the world. The available spell checker for Kiswahili (JAMBO 

SPELL CHECKER,2004) are associated with low speed, and low accuracies and therefore, the 

need for an improved version, and hence, the advent of this research works.   

This research work aligns well with the United Nation (UN) Sustainable Development Goals 

(SDG). SDG 4.6 stipulates that: “by 2030, all youth and a substantial proportion of adults, both 

men and women, achieve literacy and numeracy”. This research work aims at enhancing the 

accuracy of written Kiswahili text through the use of the proposed writing aid, which in term 

can be used in promoting literacy and thereby support the realization of the aforementioned 

SDG. 

Another SDG is 9.c, which aims at significantly increasing access to information and 

communications technology and striving to provide universal and affordable access to the 

Internet in least developed countries. The output of this research work is an artifact which can 
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be used to process information by correcting non-word errors in Kiswahili text. This research 

work is part of the effort to computerize or make the computer to comprehend or understand 

our local natural languages.  

1.1 Problem Statement     

In an ideal situation, Kiswahili language writers would create accurate and error-free 

documents. However, due to human error, inaccurately written documents in Kiswahili 

document archives remain a significant challenge, posing a risk to the language's global 

recognition. Existing solutions like the JAMBO SPELL CHECKER (2004) have limited scope, 

speed, and accuracy due to their erroneous dictionary, which contains misspelled words (like 

"waliyofundis" instead of "waliyofundisha", "waliwasimami" instead of "waliwasimamia", 

among other). The dictionary was created using news papers from the internet, which source 

contain misspelled words and named entities - for instance, Chiligati" and "Ishengoma," - that 

should not be part of the dictionary.The need for accurate and error-free documents in kiswahili 

cannot be overlooked, as this would improve communication, education, and future research 

works in the language.  

1.2 Research Objectives     

1.2.1 Main Objective     

The aim of this research is to create an automated non-word error detection and correction system 

that can accurately identify and correct non-word errors in kiswahili text. 

1.2.2 Specific Objectives    

1) Study the orthography of Kiswahili language. 

2) Review the literature on the techniques used in non-word error detection and correction 

systems as well as similar systems. 

3) Design a novel non-word error detection and correction system for Kiswahili language. 

4) Develop  the detection and correction system. 

5) Conduct performance evaluations of the new non-word error detection and correction 

system   
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1.3 Research Questions    

1) What are the structural and linguistic peculiarities of the Kiswahili language that need 

to be considered for developing a non-word error detection and correction 

spellchecker? 

2) What are the different techniques used in non-word error detection and correction 

systems, and how do they compare to similar systems? 

3) What techniques and algorithms can be used to design and develop an efficient non-

word error detection and correction spellchecker for Kiswahili language? 

4) How can the newly created spellchecking system be implemented and integrated with 

other software and applications? 

5) How effective and accurate is the new spellchecking system in identifying and 

correcting non-word errors in Kiswahili language texts, and how does it compare to 

existing spell checkers? 

1.4 Significance of the Study    

Technology is a rapidly evolving field, and the need to improve existing computer tools to 

enhance communication among people is crucial. As the number of kiswahili language users 

continues to grow, there is an increasing demand for applications for processing Kiswahili 

language.  

This study aims to contribute significantly to: 

1. The field of computational linguistics by developing an NLP System for kiswahili 

which can detect and correct non-word errors in Kiswahili text. The NLP System could 

be used as a model for developing similar systems for other under-resourced 

languages. 

2. The development of other NLP tools such as grammar checkers, language translators, 

question-answering systems, kiswahili language compilers, optical character 

recognition systems, and more (Oyieke, 2020).  

3. Improving the quality of kiswahili texts by using the proposed system as a writing aid 

which can automatically detect and correct non-word errors in text.  
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4. Supporting non-native speakers in their bid to learn kiswahili through writing correct 

kiswahili text. This issue aligns with Uganda's Vision 2040, which prioritizes the 

development of a knowledgeable society that can communicate effectively in diverse 

languages (National Planning Authority, 2013).  

1.5 Scope of the Study     

1.5.1 Geographical Scope: 

The study will primarily focus on Kiswahili language text written in East Africa, specifically in 

countries where Kiswahili is widely spoken, such as Tanzania, Kenya, Uganda, Rwanda, Burundi, 

and the Democratic Republic of the Congo. However, the developed spellchecker can potentially 

be used for Kiswahili text written anywhere in the world. 

1.5.2 Content Scope: 

The study will focus on non-word error detection and correction for Kiswahili language text. Non-

word errors refer to spelling mistakes where the misspelled word does not exist in the language's 

lexicon (Balagadde & Premchand, 2016 b, Jiang, Yang, & Rio 2019). The study will utilize the edit 

dictionary lookup and Jaccard Coefficient technique to identify and correct non-word errors in 

Kiswahili language text. 

1.5.3 Time Scope: 

The study will be conducted within a period of 12 months from the date of approval. The 

development and implementation of the spellchecker will be done in phases, and each phase will 

have specific milestones and deadlines to ensure timely completion of the study. The evaluation 

of the spellchecker's performance will also be conducted within this time frame. 

1.6 Dissertation Structure    

The dissertation consists of five chapters.  

Chapter 1 provides an introduction to the study, including the problem statement, research 

objectives, research questions, scope, and limitations.  
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Chapter 2 examines the literature review. Various techniques used in non-word error detection 

and correction systems as well as spell checkers for other languages have been surveyed. In 

addition, various theories and concepts on spell checkers and related research work on different 

languages and associated components, such as corpora have been presented and discussed. 

Chapter 3 presents Research Methodology which is the blue print for conducting this research 

work. The major methodology used in this research work is the “Research Science 

Methodology”, since an artifact is the main output of this research.   

Chapter 4 presents background of kiswahili language since this the application domain of the 

proposed system.  

Chapter 5 entitled “System Design Implementation and Evaluation” presents the process of 

developing the design system and implementing it. The final system is evaluated through 

experimentation and results obtained are analysed and discussed.   

Chapter 6 entitled “Conclusion and Future Work” presents conclusion emanating from the 

evidence adduced in research work as well as suggestions for future works.   
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2 CHAPTER TWO: LITTERATURE REVIEW    

2.1 Definitions of Terms    

2.1.1  Linguistics Concepts    

Linguistics is a field of study concerned with language research and development. As this research 

focuses on language spell checking, it is important to borrow and use some concepts from 

linguistics. Morphology is one of the most important concepts in linguistics, which refers to the 

study of the internal structure of words and the systematic form to meaning correspondence of 

words. Morphology deals with the ways in which words (lexemes)  are formed and with spelling 

the appropriate form of a lexeme in a particular syntactic context.  Some words can be split into 

smaller units that can also have their own meanings. Hence, a term called morpheme is defined as 

the minimal linguistic unit with a lexical or grammatical meaning. For example, in the word 

"Unakula", we have the prefix “U” that represents the second person singular (you), “Na” is an 

infix that indicates the present tense, and “kula” is the root word, and it means "to eat." Kiswahili 

is an agglutinative language which means that its words can be formed by a combination of 

different morphemes, where these morphemes are not modified in spelling or phonetics prior to 

their use in any word, (Prosz´eky and Kis, 1999).  

2.1.2 Text Corpus    

An electronic text corpus, which is a computer-readable format of a large collection of language 

data in written form, is a valuable tool for obtaining statistical information about a language 

(Manning and Schutze, 1999). Corpora, which are bodies of text that consist of several 

collections of texts, are available for almost every language. Some of the most well-known 

corpora include the Helsinki Corpus of Kiswahili (HCS) (Hurskainen, 2004), the American 

National Corpus (ANC) for American English (Smith.j.A,2005), the British National Corpus 

(BNC) for British English (Smith, E. R. 2010), among others.  

The HCS is a result of the SALAMA (Kiswahili Language Manager) project initiated by 

Hurskainen, (Hurskainen, 2004), and it currently contains over twelve million standard 

Kiswahili words. The system uses a two-level morphology approach to collect terminologies 
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from the internet and lists of terminology coined by the National Kiswahili Council of Tanzania. 

These corpora are essential for developing Natural Language Processing (NLP) applications.    

2.1.3 NLP (Natural Language Processing)     

The ability of computers to learn, understand, and interpret natural languages is known as 

Natural Language Processing (NLP), (Collobert, R., Weston,2011).  

In human communication, language is used as a means to convey information. The term 

language can be applied to either natural language or computer language. Natural languages are 

the languages spoken by humans, such as English, Japanese, French, and Kiswahili while, on 

the other hand,  formal or computer languages have rigid structures defined by a set of rules, 

such as Java, C++, and Python. Natural languages are highly flexible, which means that they 

cannot be characterized as a definitive set of sentences, and they are challenging to work with 

because their rules are not as precise as those of formal languages.  

2.1.4 Spell Checker Understanding    

The task of a spell checker is to identify incorrectly spelt words and suggest alternative words 

with correct spellings. A number of techniques and algorithms have been developed in this 

regards.  

Kukich (Kukich, 1992) has classified spelling errors into two categories: lexical (Non-word) 

errors and grammatical errors. Lexical errors, also known as usage errors, occur when a word is 

misspelled or is not a valid orthographic form of the language. Grammatical errors, on the other 

hand, are morphosyntactic errors that involve the combination of words or their grammatical 

modification, such as errors in conjugation or declension. The spell-checking process can be 

divided into two stages: detection and correction for both lexical and grammatical errors.  

2.2 Non-Word Error Detection    

Non-word error detection is the first step in before suggestions are generated to the erroneous 

word. Many authors have conducted research in this area. (Hládek et al. 2020);  



 
 

8  P a g e  
 

2.2.1 Dictionary Lookup Technique  

Dictionary Lookup Technique involves comparing words against a dictionary to identify 

misspelled words. This approach assumes that correctly spelled words are captured in the 

dictionary. Non-existent words in the dictionary are considered potential errors and are flagged 

by the system. However, this approach may not be effective for detecting real word errors 

according to Kukich (Kukich,1992). 

2.2.2 Bi-gram Matrix Technique 

This method employs a non-positional bi-gram matrix, sized at 26 by 26, designed to capture 

the presence or absence of specific bi-grams. In this approach, each bi-gram is assigned a binary 

value: one if it is found within the language corpus under consideration, and zero if not. The 

input text is then scrutinized to verify the existence of its constituent bi-grams within the matrix. 

If any bi-gram is found to be absent, the word is marked as a non-word. This technique has 

demonstrated its effectiveness in identifying errors arising from Optical Character Recognition 

(OCR) processes, although it is generally less precise when it comes to detecting errors 

introduced by human authors. 

2.2.3  Pattern Matching Technique  

In this approach, predefined patterns or rules are used to identify non-word errors. These patterns 

can be based on common misspellings, typographical errors, or specific error patterns observed in 

the language. 

The system compares each word in the text against the patterns and flags those that match as 

potential non-word errors. 

Pattern matching can be effective for detecting errors that follow specific patterns, such as repeated 

letters, transposed letters, or common typographical mistakes. (G.W. Milligan and P.D. Isaac. 1980) 

2.3 Non-Word Error Correction     

In a spelling correction process, after detecting errors, the next stage is to generate words that 

could be the correct form of the misspelled word. According to Kukich (Kukich,1992), the 

correction process consists of two steps: the generation of words that are likely to be the correct 

spelling, and the ranking of those generated words. Here are a few ways to archive this. 
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2.3.1 Lexicographical distance 

The lexicographical distance calculates the minimum number of inserting, deleting, 

transposition, and substituting letters necessary to transform one word into another (Vienney, 

2004). The Levenstein distance is the most popular lexicographical distance, also known as the 

"edit distance." This metric calculates the edit distance by considering four string operations: 

substitution, insertion, transposition, and deletion (Levenstein, 1966). These operations are 

described below: 

 Insertion: This algorithm corrects erroneous words with a missing character. The 

principle of this algorithm is to insert a letter of the alphabet at the position where the 

error occurred and check if the resulting word is correct before adding it to the list of 

candidate words. The process is repeated for all the letters of the alphabet. 

 Deletion: This algorithm removes characters from a wrong word. The algorithm 

removes a character from the word and checks if the resulting word is correct before 

adding it to the suggestion list. The process is repeated for all the letters of the word. 

 Substitution: The substitution algorithm replaces each letter of the word, one after the 

other, with a letter of the alphabet and checks if the resulting word is correct before 

adding it to the suggestion list. The same process is repeated for all the letters of the 

alphabet. 

 Transposition: This algorithm changes the position of one character of the word by 

putting it in all the other positions, and each time, it checks if the resulting word is 

correct before adding it to the suggestion list. The process is repeated for all the letters 

of the word. 

 

2.3.2 The Burkhard-Keller Tree (BK-Tree) 

The Burkhard-Keller Tree, commonly referred to as the BK-Tree, stands as a tree-based data 

structure designed for locating near-matches to a given string query. This innovative data 

structure was first introduced by Walter A. Burkhard and Robert M. Keller in their seminal 

paper titled "Some Approaches to Best Match File Searching" (Burkhard and Keller, 1973). 
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Over the years, the BK-Tree has found widespread application in various text processing tasks, 

particularly in spell checking algorithms. 

The BK-Tree algorithm leverages two fundamental concepts, namely the Levenshtein distance 

and the Triangular Inequality, to drastically reduce the time complexity of string-matching 

operations. This optimization has made it a key player in the realm of string comparison and 

retrieval. 

One of the significant advantages of the BK-Tree lies in its role in implementing the auto-

complete feature in numerous software and web applications. Its efficiency and ability to handle 

large datasets have contributed to its popularity in enhancing user experience and productivity. 

In a Burkhard-Keller Tree, any node can be chosen as the root node, and it may possess zero or 

multiple sub-trees. Each node within the structure represents individual words from a 

dictionary. Importantly, the total number of nodes in the BK-Tree corresponds to the number 

of words inserted into the dictionary. 

The edges connecting the nodes in the BK-Tree are assigned integer values based on the 

Levenshtein distance, which adheres to the following three criteria: 

1. Exact Match: If the Levenshtein distance between two words, X and Y, is zero, then 

X is identical to Y. 

2. Symmetry: The distance from X to Y is equal to the distance from Y to X, ensuring 

symmetry in the distance calculation. 

3. Triangle Inequality: The path from one point to another should never be longer than 

any route that passes through any intermediary point. This principle enhances the 

efficiency of the BK-Tree in near-match retrieval.  

2.3.3 Jaccard Coefficient Technique   

The Jaccard coefficient, also known as the Jaccard similarity coefficient or Jaccard index, is a 

statistical measure used to assess the similarity between two sets. In the context of Natural 

Language Processing (NLP), the Jaccard coefficient technique can be applied to compare and 

quantify the similarity between sets of words or documents. Here's a brief description of the 

technique: The Jaccard coefficient technique is useful in various NLP applications, such as text 
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clustering, information retrieval, and document similarity analysis. It allows for a quantitative 

assessment of the similarity between sets of words or documents based on the shared elements and 

the totally unique elements present. 

a) Set Representation 

The Jaccard coefficient technique represents each set of words or documents as a collection 

of unique elements, disregarding the order or frequency of occurrence. For example, given 

two sets of words, each set is represented as a collection of distinct words contained within 

it. 

b) Calculation of Intersection and Union 

The Jaccard coefficient calculates the similarity between sets by comparing the intersection 

and union of the elements within the sets. The intersection represents the common elements 

shared by both sets, while the union represents the total unique elements present in both sets. 

c) Jaccard Coefficient Calculation: 

The Jaccard coefficient is computed as the ratio of the size of the intersection to the size of 

the union of the two sets. It is calculated using equation 2.1:  

J (A, B) = |A ∩ B| / |A ∪ B|                                                           (2.1) 

where A and B are the sets being compared. 

d) Interpretation of Jaccard Coefficient 

The resulting Jaccard coefficient ranges from 0 to 1, with 0 indicating no similarity and 1 

indicating complete similarity. A higher Jaccard coefficient implies a greater degree of 

similarity between the sets being compared. 

2.3.4 Alpha-code 

To identify the most suitable replacements for an unknown word, most spell checkers rely on a 

method known as alpha-coding, which involves encoding the word into a specific string 

representation. This alpha-code is essentially a string of characters formed by arranging all the 
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letters of the word in alphabetical order. The process of alpha-coding varies based on different 

computation methods. 

Ndiaye and Faltin (2003) proposed a method that involves sorting the consonants followed by the 

vowels in alphabetical order to create the alpha-code for a word. This results in a unique alpha-

code for each word, and the set of words associated with a particular alpha-code is referred to as 

the class of that alpha-code. The correction system maintains a set of alpha-codes corresponding 

to the lexicon, and for each alpha-code, it stores the class of words associated with it. 

Pollock and Zamora (1984) introduced a model that associates each word in the dictionary with its 

alpha-code, which consists of the consonants making up the word. This method necessitates the 

use of two dictionaries: one for the words themselves and another for their corresponding alpha-

codes. Correction is achieved by comparing the alpha-codes of candidate words with the alpha-

code of the erroneous word, making it effective for correcting permutation errors. 

When a misspelled word is encountered, the correction process begins by establishing the alpha-

code of the incorrect word. If this alpha-code is found in the dictionary, the system retains the 

words associated with that alpha-code as potential candidates for correction. In cases where the 

alpha-code is not found in the dictionary, the system iteratively modifies the alpha-code by adding 

one or two characters to it and checks if the newly generated alpha-code exists in the lexicon. This 

process is repeated by both adding and removing characters from the alpha-code. 

 

The resulting candidate words are then subjected to a proximity calculation with the incorrectly 

spelled word, enabling the system to rank these potential corrections. It's worth noting that while 

each word has a unique alpha-code, multiple words may share the same alpha-code. This feature 

allows a spell checker to search for words that share a similar alpha-code with the unknown word, 

enhancing its ability to identify suitable replacements.  

2.3.5 Machine Learning Approaches for Non-Word Error Correction 

Machine learning approaches offer the advantage of learning from data and adapting to various 

error patterns. These models can capture complex linguistic patterns and context-specific 

information, resulting in accurate non-word error correction. Here is an example; 
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Unsupervised Learning: refers to using machine learning techniques to automatically identify 

and correct errors in text without the need for labeled training data that explicitly specifies 

the errors and their corrections. This approach relies on the model to learn patterns and 

anomalies in the text data on its own, making it a valuable tool for addressing a wide range 

of errors beyond just misspelled words.  

 Start by collecting a large corpus of text data that may contain various types of errors, 

such as grammatical mistakes, punctuation errors, stylistic inconsistencies, and more. 

 Convert the raw text data into a numerical representation suitable for machine learning. 

Common techniques include tokenization (splitting text into words or phrases), 

vectorization (converting words or phrases into numerical vectors), and extracting 

linguistic features (e.g., part-of-speech tags, syntactic structures). 

 Apply unsupervised clustering algorithms, such as k-means clustering, hierarchical 

clustering, or DBSCAN, to group similar text segments together. The goal is to create 

clusters of text that share common characteristics, which may include similar types of 

errors.  (R.C. de Amorim. 2012. ) 

 Once errors are detected within a cluster, apply correction strategies to fix them. 

Correction strategies could be rule-based (e.g., replacing misplaced punctuation 

marks), NLP-based (e.g., suggesting alternative phrases using language models), or a 

combination of both. 

2.4 Related Works     

In the field of natural language and computational linguistics, several studies have been 

conducted by researchers across different regions. One area of focus has been the automation 

of spell-checking tools, with various applications available on the web, text editors, word 

processors, and other internet platforms. 

2.4.1 Kîmîîrû language 

For instance, Anondo, Timothy Kimathi (Anondo,2013) propose an open-source spellchecker 

for Kîmîîrû language using the Hunspell language tools which examines the morphological 

analysis of Kîmîîrû language, highlighting nouns and verbs derivation and also provides a 
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suggestion component used to generate probable suggestions for a misspelled word. He used 

dictionary look up technique for detection, and according to him this approach was selected for 

the following two main reasons:   

a) This method was vastly more accurate than those based on independent spell-checking 

methods    

b) In the future the application would be extended to include a grammar checking tool. 

This would require not only storage of a word list but also part-of-speech information 

for each word.   

The developed spellchecker is the first spellchecker for Kîmîîrû language and it can correctly 

classify Kîmîîrû words with an accuracy rate of 80%, precision rate of 100% and a recall rate 

of 78%.   

2.4.2 Gĩkũyũ Language 

The dictionary was created from a wordlist compiled and saved as a text document in UTF-8 

format. This format was necessary as the Gĩkũyũ language contains vowels that use the tilde as 

a diacritic.  They used Hunspell language tool to generate CCL, as indicated in his research 

paper. (Ng'ang'a, WKamau, C,2010). The suggestions component was used to generate 

probable suggestions for a misspelled word. It was implemented in the affix file. Hunspell used 

two sections in the affix file when generating suggestions for misspelled words. The first is the 

TRY command. This listed the language’s orthography set in order of frequency. A more 

frequently used character has more weight during suggestions. The second command used in 

the suggestion component is the REPLACE command.  

When tested on a test corpus, the spell checker attains a precision of 82%, recall of 84% and an 

accuracy of 75%.    

2.4.3 Lulogoli language 

Another relevant study was conducted by Aseyo and John Orege (Aseyo&John, 2011), who 

developed a spell checker for the Lulogoli language using the Hunspell spell checker engine. 

Their work involved constructing a word list based on word roots found in hymn books, story 
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books, and spoken language. They addressed the recognition of morphologically complex 

words, common in Lulogoli due to its agglutinative nature, by leveraging an affix file built on 

pre-segmented word derivations from the corpus. 

2.4.4 Luganda  Language 

In the context of Luganda, Robert Balagadde and P. Premchand (2016) published work on non-

word error detection and correction. Their system utilized a detection module employing the 

dictionary lookup technique. They also employed the Jaccard Coefficient (JC) as it showed 

good correlation with the Damerau Levenshtein Distance (DLD) and had a computationally 

efficient linear algorithm. The Jaccard Coefficient was used for the selection and ranking of the 

Correction Candidate List (CCL). 

Here are additional examples of studies on non-word error detection and correction systems for 

different languages: 

2.4.5 Amharic language: 

Tessema, M., & Abebe, B. T. (Tessema&Abebe,2014) developed a spell-checking system for 

Amharic that utilized a statistical approach based on n-gram language models. They focused on 

detecting and correcting non-word errors in Amharic text by considering the context and 

frequency of words in a given corpus. 

2.4.6 Hindi language 

Kumar, A., & Singhal, S. (Kumar&Singhal,2016) proposed a spell-checking system for Hindi 

that combined rule-based and statistical approaches. They used linguistic rules specific to the 

Hindi language for non-word error detection and employed a statistical model based on the 

Jaccard coefficient to rank and suggest corrections for misspelled words. 

2.4.7 Chinese language 

Li, Y., & Li, X. (Li, Y. & Li, X,2011) developed a spell-checking system for Chinese that 

incorporated a language model and phonetic similarity measures. They focused on detecting 
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and correcting non-word errors by considering the phonetic similarity and contextual 

information of Chinese characters in a given corpus. 

These examples demonstrate a variety of approaches used in different languages to detect and 

correct non-word errors. Each study employed specific techniques and methodologies tailored 

to the characteristics of the target language. 

2.4.8 Kiswahili spell checker 

The existing Kiswahili spell checker was released in December 2004. The spell checker used a 

dictionary consisting of 67900 Kiswahili words and was developed using MySpell,  (JAMBO 

SPELL CHECKER, 2004)  

However, it used different papers from the internet and some which contains misspelled words 

to create it dictionary and that was before the greatest work on Kiswahili corpus named Helsinki 

Corpus of Kiswahili (Helnsinki Corpus) published in 2006.     

The wordlist has misspelled or incomplete words, for example, the word “waliyofundis” should 

be “waliyofundisha” and “waliwasimami” should be “waliwasimamia” (JAMBO SPELL 

CHECKER, 2004). Moreover, the wordlist contains names of people such as “Chiligati” and 

“Ishengoma”, which were not supposed to be in it, because only selected and well-known names 

of people, cities and town are allowed to be in the wordlist. 

 

 

Table 2.1: Sample of words used in the dictionary of the existing Kiswahili spell checker.  

Sample of words used in the Dictionary 
of the existing kiswahili Spell Checker 
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67900     

Ababa     

Abdallah     

Abiramu     

Abiudi     

Adamu     

Adi     

Aha     

Afikir     

Afya     

Ahero     

Akichangia   

Alidhaniwa   

Aliitaja     

Allah     

Azori     

Baali     

Babuloni     

Babulonia   

Badar     

Bahari     

Bajini     

Bernike     

Biblia     

 Bidaya     

Blasto     

Bonde     

Buki     

Buleani     

Bungoma    

Bute  kataa 
waliwasimami 
waliwaunga 
waliwavuruga 
waliyokataa 
waliyofundis 
unga     

2.5 Research Gap.    

Despite existing efforts to develop spellcheckers for Kiswahili, such as the JAMBO SPELL 

CHECKER (2004), there remains a significant research gap in the field of non-word error 

detection and correction for the Kiswahili language. The existing solutions suffer from 

limitations in terms of scope, speed, and accuracy, primarily due to their dictionary compilation 

method and inadequate coverage of non-word errors. 

The JAMBO SPELL CHECKER, for instance, relies on a dictionary that includes misspelled 

and incomplete words obtained from internet sources. This approach introduces errors and 

inconsistencies into the spell-checking process. The dictionary contains misspelled words, 

names of individuals, and other non-linguistic elements, which are not appropriate for accurate 

non-word error detection and correction. As a result, the effectiveness of the spell checker in 

detecting and correcting non-word errors is compromised. 

To bridge this research gap, this study proposes the development of an improved non-word 

error detection and correction system specifically designed for the Kiswahili language. The 

proposed system will leverage advanced algorithms and unsupervised machine learning 

techniques to enhance the accuracy and efficiency of non-word error detection and correction 

in Kiswahili documents. 

By addressing this research gap, the proposed system aims to improve the quality of written 

texts in Kiswahili, a widely spoken Bantu language in East Africa. The development of an 
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effective non-word error detection and correction system will contribute to the global 

recognition and acceptance of Kiswahili as a language of communication, education, and 

research. Furthermore, this proposed system lays the foundation for the future development of 

more advanced language technologies, including grammar checkers, paraphrasing systems, and 

machine translation systems tailored for Kiswahili. 

In summary, the research gap identified in the literature review is the lack of a comprehensive 

and accurate non-word error detection and correction system for the Kiswahili language. The 

proposed system aims to fill this gap by utilizing advanced algorithms and unsupervised 

machine learning techniques, ultimately improving the quality of written texts and promoting 

the global recognition of Kiswahili as a language. 
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3 CHAPTER FOUR: KISWAHILI AUTHOGRAPY    

Kiswahili is a Bantu language originally spoken along the East African Coast from Southern 

Somalia to the Northern part of Mozambique and has existed for more than 1,000 years. It’s 

generally spoken by more than 130 million people all over the world,   The language has a rich 

history and has evolved over time, influenced by various cultures and languages. Kiswahili 

orthography is based on the Latin script and consists of 29 letters, including five vowels and 24 

consonants. 

Table 3.1: Table showing Kiswahili Alphabet Consisting of 24 symbols 

KISWAHILI APLHABET 

 

VOWELS 

   

 Aa, Ee, Ii, Oo, Uu 

  

 CONSONANTS 

  

 Bb, CHch , Dd, Ff, Gg, Hh, Jj, Kk, Ll, Mm, Nn, Pp, Rr, Ss, Tt, Vv, 

Ww, Yy, Zz 

 

The objective of this chapter is to conduct a thorough examination of Kiswahili orthography 

and its distinctive characteristics, which constitute a crucial foundation for crafting an efficient 

error detection and correction system. Within this chapter, we delve into various facets of 

Kiswahili orthography, encompassing spelling rules, while also addressing the complexities 

inherent to Kiswahili orthography and proposing strategies to overcome these challenges in the 

development of our error correction and detection system. 

Kiswahili, classified as a Bantu language, is part of the broader Niger-Congo language family. 

It shares this linguistic heritage with languages such as Buganda in Uganda, Sotho in Lesotho, 

Zulu in South Africa, and Kikuyu in Kenya, among others. Although these languages are not 

mutually intelligible, they trace their roots back to a common ancestral language and exhibit 

fundamental similarities in vocabulary, word formation processes, and sentence structure. 

In essence, this chapter endeavors to provide a comprehensive grasp of Kiswahili orthography, 

elucidating its significance and its potential to elevate the precision of written Kiswahili through 

the development of a non-word error correction and detection system. For instance, consider 

the Kiswahili term "mtu," signifying "person," and its plural form, "watu," signifying "people." 
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This chapter underscores the parallels in singular and plural word forms, as depicted in Table 

3.1.  

Table 3.2:  Examples of how nouns are pluralized in some Bantu languages 

 

 

 

   

    

  

Due to the dynamic exchange between local communities and foreign influences, Kiswahili has 

seamlessly incorporated loanwords from a multitude of languages, including Arabic, English, 

German, Portuguese, Persian, and Hindi. It is estimated that foreign vocabulary constitutes 

approximately 30% of the Kiswahili lexicon, with Arabic contributing the majority. For 

instance, the term "Kiswahili" finds its origins in the Arabic word "Sahel," signifying "coast." 

Numerous factors have contributed to the rapid proliferation of Kiswahili, both within Africa 

and beyond. These factors encompass media, trade, educational systems, and the notable efforts 

of influential leaders such as Presidents Nyerere of Tanzania, Jomo Kenyatta of Kenya, and 

Prime Minister Milton Obote of Uganda, who championed Kiswahili during the struggle for 

independence (uhuru). President Nyerere, notably, elevated Kiswahili by adopting it as the 

medium of instruction in primary schools. 

Currently, Kiswahili serves as the primary language in Tanzania, Kenya, and the Democratic 

Republic of Congo, with several other countries employing it as a second language. These 

nations include Uganda, Zambia, Mozambique, Malawi, Rwanda, Burundi, Somalia, and the 

Comoro Islands. Notably, Kiswahili enjoys international recognition, with the African Union, 

formerly known as the Organization of African Unity (OAU), designating it as one of Africa's 

official languages. 

Bantu Language Country Singular Plural 

Baganda   Uganda    omuntu    abantu   

Sotho   Lesotho    motho   batho    

Zulu South Africa    umuntu    abantu 

Kikuyu Kenya   muntu   abato 



 
 

21  P a g e  
 

Furthermore, Kiswahili has gained global visibility through major radio networks such as the 

BBC, Voice of America, Radio South Africa, Deutschewelle (Germany), Radio Cairo, Radio 

Japan, Radio Beijing, All India Radio, and Radio Moscow International. Several universities 

and colleges across Europe, Asia, North America, and other parts of Africa offer Kiswahili 

programs. The language has also made appearances in North American films like "Hotel 

Rwanda," "The Last King of Scotland," "The Lion King," and "Darwin's Nightmare." 

Kiswahili's reach extends to a wealth of internationally renowned songs, including "Hakuna 

Matata" (No Worries), "Malaika Nakupenda Malaika" (Angel, I Love You, Angel), and "Jambo 

Bwana" (Hello Mister). Moreover, some English songs, like Lionel Ritchie's "All Night Long" 

and Michael Jackson's "Liberian Girl," incorporate Kiswahili phrases. 

Additionally, there exists a multitude of websites dedicated to Kiswahili grammar, culture, 

history, and current affairs. The most ambitious initiatives to promote Kiswahili have originated 

in the United States, notably the world-renowned Kamusi Project, managed by Yale 

University's Kiswahili Department. Noteworthy tech giants Google and Microsoft have also 

introduced Kiswahili-language internet search engines, making Kiswahili accessible on a global 

scale. 

3.1 Kiswahili Word Categories     

Kiswahili word categories (Parts of speech) sometimes called word classes, in computational 

linguistic also known as lexical categories. It refers to the group of words which are 

characterized by their semantic content. Words can be classified using various criteria.   

Traditionally, words in Kiswahili are classified into eight classes; Noun, Pronoun, Verb, 

Adverb, Adjective, Conjunction, Interjection and Preposition. Refer table 3.2   
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Table 3.3: Kiswahili Word Categories and corresponding examples 

Class Translation(English)   Example     

Nomino     Noun     mtu (person), mbili (two)     

Viwakilishi     Pronoun     mimi (I), wao(they)     

Vitenzi     Verb     kula (eat), lala (sleep)     

Vielezi     Adverb     shuleni   (school),  asubuhi 

(morning)     

Vivumishi     Adjective     nzuri (good), mrefu (tall)     

Viunganishi     Conjuction     na (and), lakini (but)     

Vihisishi     Interjection     lo! (lol!), ah! (ah!)     

Vihusishi     Preposition     mbele ya (in front of)     

 

Different languages differ in syntax and morphology. For example: In English, Adjective (ADJ) 

comes before a noun (N), while Kiwahili, like many other Bantu languages has fairly fixed base 

word order. In Kiswahili Adjective follows a noun as shown below  

 Mtoto/N mzuri/ADJ (Kiswahili) -> beautiful/ADJ baby/N (English)  

3.2 Noun Classes (Ngeli za nomino)     

Most languages around the world, with English as a notable exception, employ a system of 

categorizing nouns into distinct groups known as noun classes. In the case of Kiswahili, the 

historical classification of nouns into these classes was a reflection of how East African 

communities perceived the world around them. For instance, humans were grouped into one 

class, animals into another, sharp or elongated objects into yet another, and so forth. 

However, over time, the East African region experienced increasing interactions with the 

outside world, primarily through trade expansion and later, colonialism. These interactions led 

Kiswahili to assimilate new vocabulary from languages like English, German, Portuguese, 
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Arabic, Hindi, and more. The influx of foreign terms into Kiswahili necessitated the 

reevaluation and expansion of the noun class system. Presently, Kiswahili employs a 

classification system comprising eight distinct noun classes.  

Listed below are the names of the noun classes and a brief description of what they contain.    

1. M-/WA- class contains human beings.     

Eg: mtu – person watu – people mganga – doctor, shaman waganga – doctors, shamans 

mgeni – visitor, guest wageni – visitors, guests    

2. M-/MI- class contains trees, plants, etc.    

Eg: mti – tree miti – trees mmea – plant mimea – plants    

3. JI-/MA- class contains fruits, parts of plants, etc. It also contains mass nouns and 

collectives.     

Eg: jibu – answer majibu – answers jina – name majina – names jimbo – province majimbo 

– provinces    

4. KI-/VI- class contains objects useful to humans and artifacts, etc.     

Eg: kiatu – shoe viatu – shoes kiazi – potato viazi – potatoes kidonge – kijiko – spoon 

vijiko – spoons    

5. N- class contains words borrowed from other languages, names of animals and relationship 

nouns, etc. Due to the large number of borrowed words in kiswahili, the N- class is the 

largest of all the noun classes. Nouns in the N- class are identical in both their singular and 

plural forms and therefore do not have singular or plural prefixes.    

 Nouns borrowed from other languages:    

For example: baiskeli – bicycle(s) meza – table(s) barabara – road(s) barafu – 

ice kahawa – coffee    

 Names of animals:    

For example: simba – lion(s) twiga – giraffe(s) pundamilia – zebra(s) paka – 

cat(s) mbwa – dog(s)  
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 Relationship nouns:    

For exaample: baba – father(s); mama – mother(s); dada – sister(s); kaka – 

brother(s); bibi – grandmother(s); shangazi – paternal aunt(s); rafiki – friend(s); 

ndugu – relative(s); 

There are some nouns in the N- class which do not belong to any of the categories 

listed above, for instance:    

 ndizi – banana(s); nyumba – house(s); chumvi – salt; chupa – bottle(s); 

simu – telephone(s); mboga – vegetable(s); takataka – garbage    

6. U- class contains household objects, names of countries, abstract nouns and qualities. Most 

nouns belonging to this class are abstract nouns, uncountable nouns and names of some 

countries. Almost all nouns in this class have the letter U- as a prefix when in singular form 

however a few nouns begin with the letter W- in the singular form. Here are a few 

categories of nouns which belong to the U- Class:    

 Abstract nouns:    

utata – complication,  ufalme – kingship uzee – old age utoto – childhood  

Uislamu – Islam Ukristo – Christianity ujana – youthfulness uvivu – laziness 

umoja – unity  

 Uncountable nouns:    

ugali – corn meal porridge ubongo – brain matter uboho – bone marrow wali – 

rice umeme – electricity    

 Names of countries or regions:    

Ulaya – Europe Uchina – China Unguja – Zanzibar Uingereza – Great Britain 

Uhindi – India    

7. PA- class contains locatives.     

For example: kabati – cupboard kabatini – in the cupboard nyumba – house    

8. KU- class contains verbal nouns.    

In Kiswahili, the KU-Class serves a specific purpose—it is exclusively used with verbs to 

create infinitives or gerunds. In English, an infinitive is typically constructed using the 

preposition "to" followed by the verb itself (e.g., "to go," "to eat," "to work," and so forth). 

An infinitive can function as a verb complement within a sentence (referred to as a verbal 
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infinitive) or as the subject of a sentence (known as a verbal noun). On the other hand, a 

gerund is a verb form that concludes with -ing. It carries the same meaning as a present 

tense participle and can similarly serve as the subject of a sentence (also termed a verbal 

noun). Below, you'll find some illustrative examples:   

Infinitive - Verbal Infinitive:  Ninapenda kusoma. – I like to read. Gerund - Present 

tense participle:  Ninapenda kusoma. – I like reading Infinitive - Verbal Noun:  Kusoma 

ni kuzuri. – To read is good.    

Gerund - Verbal Noun:  Kusoma ni kuzuri. – Reading is good.    

3.3 Pronouns (Kiswahili)     

 Personal pronoun (Viwakilishi vya nafsi)      

Personal pronouns are the same whether used as subject or object. However, they have 

different forms depending on the person referred to. Table 3.3 shows the list of 

personal pronouns.     

Table 3.4: Personal Pronouns in singular and Plurial 

     Singular     Plural     

1st    person  (Nafsi  ya kwanza)     Mimi (I, me)     Sisi (we, us)     

2nd person (Nafsi ya pili)     Wewe (You)     Ninyi (you)     

3rd person (Nafsi ya tatu)     Yeye (him, her, she, he)     Wao (they, them)     

    

 The Pronoun it, they and them are not expressed by personal pronouns in Kiswahili when they 

do not refer to people. Instead demonstrative pronouns are used. Table 3.4 shows demonstrative 

pronouns and other types of pronouns.    
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Table 3.5: Types of Pronouns and examples 

   Pronouns  Examples 

Interrogative pronoun  (Viwakilishi 

viulizi)  
Nani    

Examples:      

Nani atakuja kesho? (as subject)     

Ulimwona nani? (as direct object)     

Alimpa nani barua? (as indirect 

object)     

Ulisafiri  na  nani?  (as  object  of  a 

preposition)     

Akina nani (Plural) always take 

class 2 noun agreement.     

Examples:     

Akina nani watakuja kesho? (as 

subject)     

 

Reflexive pronoun   (Viwakilishi 

virejesh 

i) 

    –ji- 

Example: Ulijisaida (You helped 

yourself)  

Demonstrative   pronoun   

(viwakilishi vioneshi)     
Huyu, Yule, wale, hao…     

Example: Hawa ni watoto wangu. 

Wale ni wa dada yangu.     

Possessive  pronoun    

(Viwakilishi vimilikishi)     

Changu, wangu, yangu…     

Example: Kitabu hiki ni changu.     
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Relative pronouns (Viwakilishi 

virejeshi)   
Amba- ye-, o-, ko-, po-…..     

Examples:      

Nina rafiki ambaye anaishi Zanzibar 

Nina rafiki anayeishi Zanzibar.     

Nina rafiki aishiye huko Zanzibar.(I 

have friend who lives in Zanzibar)     

Indefinite pronoun      -ote, -ingi, -ingine, -o –ote, baadhi 

ya, mojawapo, kadhaa  

Example: Vitu vyote vipo (There is 

everything)     

3.4 Verb (Kitenzi)     

Kiswahili verb has a complex morphology. Generally, Kiswahili verbs consist of subject 

agreement marker, tense marker, object marker, stem, suffixes and final vowel (ignoring 

negative markers, relative markers and voice morphology).     

 Kiswahili verb structure      

The Kiswahili verb consists of a subject marker, a tense marker and a verb stem.   

    

Figure 3.1: Structure of Kiswahili Verb 
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For instance, the word "Ninalala" can be split up into three parts fitting the above category.      

 Ni-na-lala I am sleeping     

 Ni - is the subject marker for "I"      

 na - is the tense marker indicating "present tense” lala - is the verb stem for "sleep"      

The verb in Kiswahili is marked by a prefix which identifies the subject. The following are some 

of the various prefixes.     

 ni - I -  First person singular      

 u - you - Second person singular      

 a - she/he - Third person singular      

 tu - we - First person plural      

 m - you - Second person plural      

 wa - they - Third person plural      

In referring to the "present tense” the tense marker "na" is used Thus: Ninalala, unalala, analala, 

tunalala, mnalala, wanalala      

In referring to the "past tense” the tense marker "li" is used.     

Thus: nililala, ulilala, alilala, tulilala, mlilala, walilala. The future tense marker is "ta"  e.g., 

nitalala, tutalala, etc.     

3.5    Adjectives    

In Kiswahili, any word, phrase, or clause employed to modify or elucidate a noun is categorized 

as an adjective. The realm of adjectives in Kiswahili unfolds into distinct categories, each 

governed by its unique set of rules: 

1. Agreement Adjectives (Vowel-Initial Stem): These adjectives necessitate agreement, 

with the agreement prefix affixed to an adjective stem that commences with a vowel. 

2. Agreement Adjectives (Consonant-Initial Stem): Similar to the previous category, these 

adjectives call for agreement, but the agreement prefix is linked to an adjective stem that 

initiates with a consonant. 

3. Exceptional Adjectives: These adjectives also require agreement but deviate from the 

conventional agreement patterns of other adjectives. 
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4. Invariable Adjectives: Originating from Arabic roots, these adjectives maintain their form 

and do not undergo agreement adjustments when paired with the nouns they modify. 

5. Compound Adjectives: These adjectives are formed by combining nouns, verbs, or other 

words in Kiswahili, coupled with the associative marker -a. 

These diverse adjective categories within Kiswahili encapsulate the intricacies of noun 

modification and elucidation in the language.  

3.5.1 Vowel Stem Adjectives    

Adjectives that must take agreement fall into two categories, adjectives that start with vowels 

and adjectives that start with consonants.    

Table 3.5 shows the agreement taken by adjective stems that begin with either a, e, i, o, or u, 

the letter y is not considered a vowel in Kiswahili.    

Table 3.6:  Vowel Stem Adjectives 

   -angavu  -ekundu -ingine  -ororo -unganifu 

Sing. M mwangavu mwekundu mwingine mwororo munganifu 

plur W waangavu wekundu wengine waororo waunganifu 

       

Sing N nyangavu nyekundu nyingine nyororo nyunganifu  

Plur N nyangavu  nyekundu nyingine nyororo nyunganifu 

3.5.2 Consonant Stem Adjectives    

Table 3.7:  Consonant Stem Adjectives 

 Noun Class     -zuri     -baya     

Singular M- mzuri mbaya 

Plural    WA-       wazuri    wabaya 

Singular     M-     mzuri     mbaya     

Plural      MI-        mizuri      mibaya      
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Singular     M-     mzuri     mbaya       

Plural      MA-       mazuri      mabaya     

Singular     KI-     kizuri     kibaya     

Plural      VI-     vizuri     vibaya     

Singular     N-     nzuri           

Plural      N-     nzuri          

 

In general adjectives with consonant stems follow Table 4.6, however when consonant stem 

adjectives must agree with nouns from the NClass then the following rules apply.    

1. When a consonant stem adjective beginning with the lettersd, g, j, y, or z is used to 

describe a noun from the N- Class then the prefix n- is necessary.    

2. When a consonant stem adjective beginning with the letter bis used to describe a noun 

from the N- Class then the prefix m- must be used.    

3. All other consonant stem adjectives do not take agreementwhen describing nouns from 

the N- Class.    

3.5.3 Exception Adjectives    

Four commonly employed adjectives in Kiswahili exhibit a distinct pattern of agreement, 

differing from the standard agreement rules explained earlier. These adjectives are:  

 ote (meaning "all" or "whole") 

 o ote (meaning "any") 

 enye (meaning "having") 

 enyewe (meaning "-self") 

Notably, with the exception of the M-/WA- noun class, these adjectives adhere to an agreement 

pattern that aligns with the associative marker -a, making them relatively straightforward to 

remember.  
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Table 3.7 illustrates the noun class agreement for each noun class when used with the adjectives 

-ote, -o ote, -enye, and -enyewe. It's essential to be mindful of word order when incorporating 

the adjectives -ote or -o ote into sentences alongside other adjectives. These adjectives primarily 

convey quantity and, therefore, typically appear as the final adjectives, unless an adjective 

functions as a predicate, in which case the predicate adjective must always occupy the last 

position. 

Table 3.8: Exception Adjectives 

Noun Class   -ote 

C- Singular       

V- Plural  

chote  

vyote 

W- Singular    

Z- Plural   

wote     

zote   

 

 Chukua vitabu vikubwa vyekundu vyote. – Take all the big red books.    

 Vitabu vikubwa vyote ni vyekundu. – All the big books are red.    

 Chukua vitabu vikubwa vyekundu vyo vyote. – Take any of the big red books.    

 Vitabu vikubwa vyo vyote ni vyekundu. – Any of the big books are red.    

3.5.4 Compound Adjectives    

Compound adjectives in Kiswahili are crafted by combining nouns, verbs, and various other 

words. The process of forming compound adjectives consistently involves the placement of the 

associative marker (-a of Association) before the word undergoing transformation into a 

compound adjective. Moreover, it's crucial to ensure that these compound adjectives agree in 

accordance with the noun they describe, reflecting a harmonious relationship between the 

elements. The associative marker (-a of Association) serves as the bridge connecting two words, 

signifying a meaningful association between them. Here are some illustrative examples of 

compound adjectives: 

 maji ya moto:hot water 
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 mwili wa baridi: cold body 

 mahali pa hatari: dangerous place 

 sehemu ya siri: confidential location 

3.6 Adverbs    

An adverb, while frequently employed to enhance a verb, possesses the versatility to modify 

not only verbs but also adjectives, other adverbs, or even entire phrases within a sentence. 

Essentially, an adverb sheds light on the manner, timing, or location of an action performed by 

a person or object. Adverbs can be categorized into five primary types: Adverbs of Manner, 

Place, Time, Frequency, and Degree. Within this chapter, our exploration will delve into these 

various categories of adverbs and elucidate their formation.     

3.7 Prepositions and Conjunctions    

A preposition describes a relationship between words in a sentence and it shows time, space, and 

logical relationship. A conjunction is a word that connects words, phrases and clauses. There are 

two kinds of conjunctions: coordinating conjunctions and subordinating conjunctions. A 

coordinating conjunction links words, phrases and independent clauses in a sentence. However, a 

subordinating conjunction connects independent clause(s) and dependant clause(s). Some words 

can be either a preposition or conjunction depending on the context.    

3.7.1 Prepositions    

Within Kiswahili, certain words naturally function as prepositions, while others take on the role 

of prepositions through the incorporation of the associative marker (-a of Association) or related 

phrases. Here are examples of common Kiswahili words that inherently serve as prepositions:  

 mpaka – until, as far as, up to     

 kutoka, toka, tokea – from, out of     

 hata – even, until     

 bila – without     

 kama – as, if, like     

 tangu – since     

 kisha – then, and then    hadi – until, as far as, up to  
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3.7.2 Conjunctions 

In Kiswahili, conjunctions take two distinct forms: coordinating conjunctions and subordinating 

conjunctions. Here are some examples of each: 

Coordinating Conjunctions: 

 na - meaning "and" or "also" 

 pia - signifying "also" or "too" 

 tena - conveying "again," "furthermore," or "besides" 

Examples: 

1. Alileta mkate na mchuzi. (He/She brought bread and curry.) 

2. Nyumba yake ya kupanga ni chafu, juu ya hayo iko mbali sana.(His/her rental house is dirty, 

and furthermore, it is very far.) 

Subordinating Conjunctions: 

 Kwamba - meaning "that" or "because" 

 Ninafikiri kwamba atafika. (I think that he will arrive.) 

 Ili - signifying "so that" or "in order to" 

 Nimeenda dukani ili nipate chakula. (I went to the store so that I could get some food.) 

These conjunctions play distinct roles in connecting words, phrases, or clauses in Kiswahili 

sentences, adding depth and complexity to the language's expression.    
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4 CHAPTER THREE METHODOLOGY    

4.1  Overview    

The methodology employed in this study encompasses distinct phases, comprising data 

collection and preparation, system design and development, and evaluation. Each of these 

phases encompasses a series of purpose-driven activities aimed at fulfilling the study's 

objectives. 

To address the challenge at hand, this research adopted the Design Science Research 

Methodology, a problem-solving approach that places a strong emphasis on empirical testing 

and iterative refinement of the proposed solution. This methodology is particularly well-suited 

for the development of systems that exhibit both effectiveness and efficiency in addressing 

complex problems. 

In summary, the primary goal of this study was to create a non-word error correction and 

detection system for the Kiswahili language, utilizing the Design Science 

Research Methodology. 

4.1.1 The Design Science Methodology  

The Design Science Methodology (DSRM) is a research methodology that combines the scientific 

method and design thinking principles to develop innovative solutions to complex problems. 

DSRM is particularly suitable for developing software systems because it involves a cyclical 

process of problem identification, requirements gathering, design, implementation, and testing. 

DSRM encourages a human-centered approach to design, which focuses on the needs and 

requirements of the end-users. 

The rationale of choosing DSRM in this study is that it offers a systematic and iterative process 

for developing the error correction and detection system for Kiswahili. As a non-word error 

correction and detection system, it requires a comprehensive and iterative approach that addresses 

the unique challenges posed by the Kiswahili language. 
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The DSRM will be used in this study to develop the error correction and detection system for 

Kiswahili. The methodology will be applied in an iterative and cyclical process consisting of the 

following steps: 

 

 

Figure 4.1: A Three Cycle View of Design Science Research Methodology. Alan R. Hevner 

Information Systems and Decision Sciences, University of South Florida, USA. 

"Three Cycle View of Design Science Research" provides a framework for conducting and 

evaluating design science research in the field of information systems. This view consists of three 

interrelated cycles that guide the iterative and incremental process of creating and validating 

innovative artifacts. 

1. Relevance Cycle: The first cycle, known as the Relevance Cycle, focuses on the 

identification of real-world problems and the formulation of design goals. Researchers 

engage with stakeholders to understand their needs and challenges, and then define the 

objectives for the artifact to address those needs. This cycle emphasizes the importance 

of relevance and the alignment of the artifact with the practical requirements of the 

intended users and context. 

2. Rigor Cycle: The second cycle, called the Rigor Cycle, emphasizes the rigorous 

development and evaluation of the artifact. Researchers apply rigorous scientific methods 

and principles to design and construct the artifact. This cycle involves iterative 

prototyping, testing, and refinement of the artifact to ensure its quality, effectiveness, and 
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fitness for the intended purpose. Rigor is maintained through systematic evaluation and 

validation processes, such as expert reviews, usability testing, and controlled 

experiments. 

3. Design Cycle: The third cycle, known as the Design Cycle, focuses on the actual design 

and creation of the artifact. Researchers apply relevant theories, frameworks, and 

methodologies to guide the design process. This cycle involves making informed 

decisions regarding the artifact's architecture, components, functionalities, and user 

interfaces. The design decisions are based on the knowledge and insights gained from the 

Relevance and Rigor Cycles. 

These three cycles are interconnected and iterative, meaning that the findings and insights from 

one cycle inform and guide the subsequent cycles. The cycles also provide opportunities for 

feedback and learning, allowing researchers to refine and improve the artifact at each stage. The 

ultimate goal of the Three Cycle View is to produce artifacts that not only address real-world 

problems but also contribute to scientific knowledge and theory. 

By following this three-cycle approach, researchers can systematically create and evaluate 

innovative artifacts in the field of information systems. The framework ensures that the research 

is both relevant to practical needs and rigorous in its scientific foundations, leading to the 

advancement of knowledge and the development of valuable solutions for real-world problems. 

Overall, the Science Design Research Methodology will provide a structured and iterative 

approach to the development of the error correction and detection system for Kiswahili. It will 

enable the research team to address the unique challenges posed by the Kiswahili language and 

develop an effective and user-centered system.   

4.2 Conceptual Framework 

Centering on the realm of non-word error detection, SwaSpell, an intelligent system was created 

and engineered to identify and rectify spelling errors within Kiswahili text. SwaSpell comprises 

two distinct subsystems: SwaDetect, responsible for detecting non-word errors using dictionary 

look-up techniques, and SwaCorrect, which employs the Jaccard coefficient to meticulously 

select and rank candidates within the correction list.  
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Diagrammatically, Figure 4.2 and Figure 4.3 show the conceptual framework, an overview or 

a bird’s eye view of the proposed system (SwaSpell). 

 

Figure 4.2: Conception framework as a flow chart for Interactive Detection - Correction 

System 

 

Figure 4.2 Conceptual framework in pseudo code For Interactive Detection - Correction 

System 
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4.3 New Spellchecker Implementation     

The prototype is implemented using the Python programming language, chosen for its strong 

relevance to the application domain. Python has gained significant traction among researchers 

and developers for creating spellcheckers in various languages. For instance, Balagadde and 

Premchand (2016) utilized Python to develop a non-word error detection and correction 

spellchecker for Luganda, while Anondo pioneered the creation of the first spellchecker for the 

Kîmîîrû language (Anondo, 2013). Python's suitability is further underscored by its object-

oriented nature , supported by built-in data types like lists and dictionaries.  

4.3.1 Developer Requirements 

1. Hardware Requirements 

 Processor specifications: minimum Intel Core i5 since this research work would 

be dealing with large datasets or heavy algorithms. 

 RAM: a minimum of 4 GB of RAM is recommended 

 Storage capacity: At least 128GB of free storage space is recommended. 

 

2. Software Requirements 

 Integrated Development Environment (IDE): Utilization of a suitable code editor 

or IDE tailored to the programming languages and technologies utilized in 

spellchecker development, for instance, in this project Visual Studio Code, and 

IntelliJ IDEA were used. 

 Programming Languages: Python, Java, C++, or JavaScript are programming 

languages which could be used however in this project Python was used. 

4.3.2 User Requirements 

1. Hardware Requirements  

A standard computer or laptop equipped with a minimum of 1.6 GHz or faster dual-

core processor, memory of 4 GB and storage capacity of 1 GB 
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2.  Software Requirements 

 Operating System: Compatibility with the user's hardware, encompassing 

options like Windows, macOS, or Linux for desktop, and iOS or Android for 

mobile. 

 Web Browsers: Support for modern web browsers such as Chrome, Firefox, 

Safari, or Edge. 

 Spellchecker Software: Compatibility with the user's environment, be it 

applications like Microsoft Word, web browser extensions, or standalone 

spellchecker apps. 

4.4 System Evaluation 

System evaluation stands as a pivotal stage in the development of any software system, including 

error correction and detection systems. These critical steps ensure the system's effectiveness and 

reliability in accurately identifying and rectifying spelling errors. 

The evaluation of the system's performance relies on a multitude of metrics, encompassing 

Accuracy, Precision, Recall, as well as Speed of detection and correction.  

In the context of a spellchecker, accuracy refers to the spellchecker's ability to correctly identify 

and suggest corrections for misspelled words in a given text. It measures how often the 

spellchecker provides the right suggestions for fixing spelling errors. Essentially, accuracy in a 

spellchecker context indicates the proportion of correctly suggested corrections out of the total 

corrections made by the spellchecker, expressed as a percentage. Higher accuracy means that the 

spellchecker is more reliable in offering accurate spelling suggestions. 

Precision measures the accuracy of the spellchecker's correction suggestions, quantifying the 

proportion of correctly suggested corrections. Recall, on the other hand, assesses the spellchecker's 

ability to identify and suggest corrections for all misspelled words in the text, representing the 

proportion of detected errors.  

The speed of detection refers to how quickly a spell checker identifies misspelled words or errors 

in a given text. It measures the efficiency and swiftness with which the spell checker can locate 
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and flag potential spelling errors without necessarily suggesting corrections. A faster speed of 

detection means the spell checker can promptly identify errors in the text.  

The speed of correction pertains to how quickly the spell checker can not only identify errors but 

also provide accurate suggestions or corrections for those errors. It gauges the efficiency of the 

spell checker in either identifying and rectifying misspelled words or other linguistic errors. A 

faster speed of correction indicates that the spell checker not only detects errors promptly but also 

offers appropriate fixes with minimal delay. 

The experimentation employs a confusion matrix, allowing the identification of True Positives 

(TP), False Negatives (FN), False Positives (FP), and True Negatives (TN), which serves as the 

basis for calculating Accuracy, Precision, and Recall using the formulae 4.1, 4.2 and 4.3 

respectively, where: 

 True positives (TP): valid words and which is recognized by the spelling checker as 

correct word. (Say it as: Truly positive   

 True negatives (TN): invalid word that the spellchecker recognized as incorrect word 

(Truly negative)   

 False positives (FP): the system predicts the word to be correct, yet it is incorrect 

(falsely positive)   

 False negatives (FN): correct word that the spellchecker recognized as incorrect word. 

(Falsely negative); the system predicts the word to be negative yet is correct  

            (4.1) 

                                                                             (4.2) 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                               (4.3) 

Measuring Detection Speed in SwaDetect employs two key metrics to gauge the speed of 

detection. The initial metric, denoted as FD and evaluated using Equation 4.4, quantifies the 

number of words that can be examined in a single second. FD, directly influenced by the 
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computer's processing power, exhibits a proportional relationship with detection speed. In other 

words, a higher FD value signifies a faster detection speed. 

  FD = Tot / T                    (4.4) 

Where: 

 Tot stands for the total number of tokens. 

 T signifies the time taken to process these tokens. 

FC, as assessed by Equation 4.5, serves as a gauge of SwaCorrect's rapidity in producing Corrected 

Candidate Lists (CCL). FC is directly influenced by the computer's processing capabilities and 

quantifies how many words can be inspected within a single second. 

  FC = N / T                   (4.5) 

Where: 

 N represents the total number of tokens. 

 T denotes the time required to process these tokens. 
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5 CHAPTER FIVE: SYSTEM DESIGN, IMPLEMENTATION AND 
EVALUATION 

5.1  Introduction 

In essence, this chapter offers a comprehensive exploration of the design, implementation, and 

evaluation facets of the proposed Kiswahili system. It provides valuable insights into the practical 

development and deployment of a solution aimed at rectifying non-word errors within written 

Kiswahili text. 

In details: 

 The first section furnishes an encompassing view of the system's design and architecture, 

shedding light on its constituent components and their respective functionalities.  

 Following that, the subsequent section elucidates the system's implementation, 

encompassing details regarding the employed programming languages, tools, datasets, 

and resources.  

 Lastly, the chapter concludes with the presentation of the system's evaluation, delineating 

the methodology and metrics harnessed to gauge its performance.  

5.2 System Design 

The conceptualization of the Kiswahili system was rooted in the foundational principles of NLP 

and Machine Learning (ML). The design journey traversed several critical stages, encompassing 

data collection, meticulous pre-processing, and the seamless orchestration of system integration.  

An overarching emphasis was placed on sculpting the system to be inherently modular, effortlessly 

scalable, and intuitively user-friendly. 

 

Underpinning the developmental framework of SwaSpell, a novel system, are two pivotal sub-

systems: the Non-word Error Detection Sub-system, aptly christened SwaDetect, and the Non-

word Error Correction Sub-system, known as SwaCorrect. These Subsystems serve as the 

cornerstones of the system, collectively driving the mission to deliver accurate non-word error 

detection and correction capabilities in Kiswahili.    
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5.3 System Architecture: 

 The system architecture is illustrated in Figure 5.1 

 

Figure 5.1: Architecture of SwaSpell 

5.3.1 Non-Word Error Detection Subsystem (SwaDetect) 

SwaDetect employs the Dictionary Lookup Technique (DLT), where each word within the input 

text undergoes a dictionary lookup process. In the event that a word is not found within the lexicon, 

it is categorically considered a non-word or incorrect and is subsequently flagged or added to the 

list of erroneous words. It's noteworthy that the available Open Source Spellchecker for Kiswahili 

has utilized various sources from the internet, including some with misspelled words, to construct 

its dictionary. Consequently, this spellchecker is susceptible to erroneous detection and correction. 

In our research, we have opted for a more robust corpus, specifically the acclaimed Kiswahili 

corpus (Helsinki, 2006). This corpus has been rigorously experimented upon and validated by 

Kiswahili linguistic professionals, rendering it the most reliable resource for our work. 
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SwaDetect, is invoked when a token is passed to the SwaSpell, whose primary function is to 

determine whether the token in question is a correct Swahili word or a Non-Swahili word, as per 

the dictionary lookup technique elucidated in Section 2.2.1; subsequently, it triggers one of the 

following measures: 

i. If a token is found within the constituent dictionary or lexicon, it is classified as a Correct 

Swahili word. 

ii. Conversely, if a token is absent from the constituent dictionary, it is categorized as a non-

word. In this case, the word is marked or highlighted in red, awaiting correction. 

In the second case, upon detecting an error, the SwaDetect invokes SwaCorrect if the end user 

requests for a correction.  

5.3.2 Non-Word Error Correction Subsystem (SwaCorrect)    

Upon identifying a misspelled word using SwaDetect, the subsequent phase involves the 

development of the Non-word Error Correction subsystem (SwaCorrect) whose primary 

objective is to furnish a Correction Candidates List (CCL) for the non-word errors detected by 

SwaDetect. 

SwaCorrect is guided by two pivotal assumptions. The first assumption, grounded in research 

findings, suggests that a significant majority, ranging from 93% to 95%, of spelling errors can 

be attributed to an edit distance of one (ED1) from the intended target (Peterson, 1986). The 

second assumption stipulates that it is highly improbable for an end-user to commit an error on 

the first character, (Yannakoudakis, et. al.1983). 

These assumptions streamlined the development of SwaCorrect in two critical ways. Firstly, 

they led to a reduction in the number of Correction Candidates (CCs), simplifying the process. 

Secondly, they mitigated the need for extensive processing power. 

SwaCorrect's task of providing a list of Correction Candidates (CCL) was achieved by 

identifying strings at an edit distance of "n" from the misspelled word, employing the Minimum 

Edit Distance Technique. 
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Edit distance between two words essentially represents the sequence of editing operations 

required to transform one word into another. For example, transforming "jmbo" into "jambo" 

requires an edit distance of 1, as it involves inserting an "a" between "j" and "m." 

As elucidated in the methodology, we implemented four types of edit distance techniques: Insert, 

Delete, Swap, and Replace. 

 INSERT(add a letter) Example: "mt" => "mtu meaning person". 

 DELETE (remove a letter) Example: "nyumba" => "nyuma", "yumba". 

 SWAP (swap or interchange two adjacent letters) Example: "mama" => "amma". 

 REPLACE (change one letter to another) Example: "wangu" => "yangu", "tangu". 

However, due to the nature of how this technique generates candidate words, not every word in 

the candidate list is necessarily a valid word. Therefore, a filtration step is necessary to retain 

only those candidates that align with the vocabulary. 

To enhance accuracy at this stage, we opted for the Jaccard Coefficient (JC), a similarity metric 

evaluated using Equation 2.1. JC was employed to select and rank the best correction candidates 

in descending order of JC value for presentation to the end user. It is worthwhile noting that JC 

is directly proportional to similarity measure that means the higher JC the higher is the Similarity 

measure. High similarity between two sets indicates a strong resemblance, while low similarity 

suggests a greater dissimilarity or distance. 

Here are examples of non-word error correction using the Set-Based Jaccard Coefficient:  

Example 1 

let Set A = {J, M, B, O} and Set B = {J, A, M, B, O} then JC(A, B) = |{j, m, b, o}| / |{j, a, m, b, 

o}| = 4/5 = 0.8 

Example 2 

let Set A = {J, M, B, O} and Set B = { H, A, B, A, R, I } then JC(A, B) = |{j, m, b, o}| / |{ h, a, 

b, a, r, i }| = 1/10 = 0.1 
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In this context, {J, M, B, O} is more similar to {J, A, M, B, O} than {H, A, B, A, R, I}, as 

evidenced by a higher JC of 0.8 in comparison to 0.1. 

It's crucial to note that correction candidates with an ED1 are automatically selected, as they 

typically exhibit the highest JC value. Our implementation of SwaCorrect is grounded on JC 

because of its computational efficiency, given its linear nature, compared to more 

computationally intensive metrics like Damerau-Levenshtein Distance (DLD), which is 

quadratic. Additionally, JC correlates well with DLD as demonstrated by Balagadde and 

Premchand (Balagadde and Premchand 2016 a) and Table 5.1, rendering it a suitable choice for 

our purposes. 

Table 5.1: Relation between ED and JC 

 

5.4 System Implementation 

The implementation of the proposed system for Kiswahili followed a rigorous process to ensure 

that the system functions effectively and efficiently. This section discusses the programming 

languages, frameworks, and tools used, as well as gives an overview of the system's features and 

functionality. 
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The implementation process is divided into several stages, which included requirements 

gathering, design, development and test. During the requirements gathering stage, we worked 

closely with Kiswahili language experts to identify the common non-word errors that occur in 

written Kiswahili like the word Fedha (Money) which is mostly written as Feza due to the way 

it sounds. This stage is crucial in ensuring that the system is tailored to the specific needs of 

Kiswahili users.  

After the requirements gathering stage, we proceeded to the design stage, where we developed 

a system architecture that could effectively detect and correct non-word errors in Kiswahili text. 

The design stage was followed by the development stage, where we used a combination of 

programming languages, frameworks, and tools to build the system as presented in Section 3.4.1. 

Once the system was developed, we proceeded to the testing stage, where we carried out various 

tests to ensure that the system was functioning as expected. During the testing stage, we used a 

variety of test cases, including simulated non-word errors in Kiswahili text, to assess the system's 

accuracy and efficiency. 

5.4.1 Programming Languages, Frameworks, and Tools Used 

SwaSpell is developed using several programming languages, frameworks, and tools. These 

included Python programming language, Flask web framework, and MySQL database. 

Python is chosen for its simplicity, readability, and versatility, which made it easy to develop 

the system's algorithms and integrate it with other tools and frameworks. Flask, on the other 

hand, was chosen for its lightweight nature and ease of use in developing web applications. It 

allowed us to develop a user-friendly web interface that Kiswahili users could easily access and 

use. 

The MySQL database is used to store the system's data, including the Kiswahili lexicon, the non-

word error patterns, and the corrections for each non-word error. It provided a robust and reliable 

platform for storing and retrieving data, ensuring that the system could access the necessary 

information quickly and efficiently. 
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5.4.2    Integrating backend code with GUI frontend     

We have seamlessly merged the backend code with a Graphic User Interface (GUI) frontend to 

provide end-users with a straightforward way to use SwaSpell. Users can interact with our 

syatem through the GUI effortlessly. 

To initiate the process, the end user simply enters a Kiswahili word into the input field and then 

clicks on the "Spellcheck Here" button. This action transmits the user's input text to SwaDetect, 

which proceeds to validate or reject the entered word. In the event of a rejection, the erroneous 

word is highlighted in red to indicate that it is an invalid word error.  

 

Figure 5.1: SwaSpell GUI 

5.5 SwaDetect Evaluation    

The evaluation process is initiated by passing as input to SwaDetect a dictionary containing 

correct Kiswahili words and erroneous words or non-words.    

Our objective is to find out how does SwaDetect react on each of these words, in other words, 

we wanted to find out if SwaDetect detects erroneous words as non-words errors and Correct 

word as correct and after that calculate its Accuracy.    
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For this purpose, we prepared a dataset containing 300 tokens, which includes 200 correct 

words plus 100 erroneous Kiswahili words with different Edit Distances.    

In this experimentation we prepared a dataset containing 300 tokens of which 201were correct 

Kiswahili words and 99 were erroneous Kiswahili words. The dataset was passed on to 

SwaDetect and the results were captured in the confusion matrix shown in Figure 5.2, whose 

terminologies were defined in section 3.4.  Accuracy, Precision, and Recall were evaluated in 

percentage using the formulae in Equations: 3.1, 3.2, and 3.3 respectively as shown below.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
200+ 99

200+0+1+99
 x100       = 99.7 %    

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
200

200+1
 x100   = 99.5 % 

𝑅𝑒𝑐𝑎𝑙𝑙 =
200

0+200
X100 = 100.0 %  

Table 5.2: Confusion matrix for capturing data for evaluating SwaDetect performance in terms of 

Accuracy, Precision and Recall 

Confusion Matrix 

TP (True Positive)    

200  

FP (False Positive)  

1 

FN (False Negative)  

0   

TN (True Negative)    

99    

5.5.1 SwaDetect Speed Evaluation  

We carried out two sets of experimentations. One involved three Datasets with the same size 

but different content, precisely 500 words each; and the other, with three datasets of varying 

sizes but same content. We determined the time taken by SwaDetect to process the data and 

captured the results in Tables 5.4 and 5.5 respectively. We used Equation 3.4 to evaluate the 

detection speed of SwaDetect (FD). 

 

 



 
 

50  P a g e  
 

Table 5.3: Summary of results for determination of SwaDetect speed with datasets of the same 

sizes but different content 

 Dataset With Only 

Erroneous Words 

Dataset with Only  

Correct Words 

Dataset with Mix Words in 

a Ratio of  1:1 

N 500 500 500 

Ts 0.0235  0.0235 0.0235 

FD 43 Hz. 43 Hz. 43 Hz. 

 

Table 5.4: Summary of results for determination of SwaDetect speed with datasets of varying 

sizes but same content (that is, erroneous and correct words mixed in a ratio of 1:1) 

 N Ts FD 

Dataset1 237 0.0111 90 Hz 

Dataset 2 350  0.0164 61 Hz. 

Dataset 3 500 0.0235 43 Hz. 

Average(D1-D3) 1087 0,017  65 Hz 

Average Processing Speed (Hz) = (90 Hz + 60.77 Hz + 42.66 Hz) / 3 = 193.43 Hz / 3 ≈ 65 Hz 

 

Figure 5.2: Graph showing the  Relationship between Dataset Size and Detection Speed  
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FD depends on the processing power of the computer. The specifications of computer used in 

the experimentation are: Intel® i5-8250 U Processor running 64 bit Windows 10 Ultimate.    

5.6 SwaCorrect Evaluation   

5.6.1 SwaCorrect Performance Evaluation 

The evaluation process is initiated by preparing three dictionaries - namely Dic1 through Dic3 

extracts of which are shown in Tables 5.5, 5.6, and 5.7 respectively - comprising of pairs of 

Target (Correct Kiswahili word) and its erroneous version.  

Table 5.5: Extract of Dic1 containing erroneous words of ED1 from target (Correct word) 

Case Target Erroneous Word 

1    Jambo (hello)   Jjambo  

2    Kundi (Team)    Kkundi   

3 Unaotimiza (what you have done) Umaotimiza 

4  Atajifunga (to tie himself) Atajjifunga 

5 Jifanyieni (Do it yourself) jifaniyieni 

6 Jua (sun) Juua 

7 Kibao (Board) Kibbao 

9 Kula (to eat) Kla 

 

Table 5.6: Extract of Dic2 containing erroneous words of ED2 from target (Correct word) 

  Case    Target    Erroneous Word    

1   Jambo (hello)  Jammboo  

2  Kundi (Team) Kunndii  

3 Unaotimiza Uunaottimiza 

4  atajifunga Atajiffunnga 

6 jua juwaa 
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8 habari Pbary 

 

Table 5.7: Extract of Dic3 containing erroneous words of ED3 from target (Correct word) 

  Case    Target    Erroneous Word    

1   Jambo (hello)  jaambboo  

2  Kundi (Team)  kuunddii  

4  atajifunga Atajjiiffunga 

7 kibao kiibbaoo 

8 habari pbari 

 

The erroneous words are passed on to SwaCorrect to generate the Correction Candidate List 

(CCL) and if the target exists in the generated CCL then SwaCorrect has accurately provided a 

correction otherwise SwaCorrect has failed to provide a solution. A count on these entities is 

automatically captured and presented in Table 5.8. It is worthwhile noting that it is not possible 

to capture FN and TN and therefore they are assigned a value of zero. The reason behind this is 

that SwaCorrect is providing only the correct version of the invalid word. These two entities 

are relevant in detection problems. Accuracy (Ap) and Precision (PP) are evaluated using 

formulae in Equations: 3.1 and 3.2 respectively. After substitution, we observe that AP and PP 

are one and the same. The variation of how accuracy or precision varies with edit distance is 

visualized in Figure 5.3.   

Table 5.8: Example of the Dictionary use for experimentation containing errors of ED1 from target 

(Correct word) 

 Dic1 

 With Ed1 

Dic2 

With Ed2 

Dic3  

With Ed3 

Average 

Correct Prediction (TP) 112 83 32 N/A 

Incorrect Prediction (FP) 2 17 18 N/A 

Accuracy (AP) 98 83 64 82 
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Precision (PP) 98 83 64 82 

 

 

Figure 5.3: Bar chart showing how accuracy or precision varies with Edit Distance. The data 

for the visualization was captured from Table 5.8. 

5.6.2 SwaCorrect Speed Evaluation  

In reference to the experimentation, we prepared their dictionaries each with 100 tokens, namely 

Dic1 through Dic3 exacts of which are shown in Tables 5.5, 5.6, and 5.7 respectively, each item 

in each dictionary comprising of a pair of Target (Correct Kiswahili word) and it erroneous 

version. The erroneous words were passed on to SwaCorrect to generate the Correction 

Candidate List (CCL) and the time taken to generate CCLs for each dictionary was determined. 

The results of the experimentation were captured and presented in the Table 5.9. The correction 

speed of SwaCorrect (FC) was evaluated using Equation 3.4.  

Table 5.9: Summary of results for determination of SwaCorrect speed with Dictionaries of the 

same sizes but different content (that is, different Edit Distances) 

 N Ts Fc (Hz) 

Dic1 with ED1  100 0.0169 59  

Dic2 with ED2 100 0.0172 58  
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Dic3 with ED3 100 0.0175 57  

Average(ED1-ED3) 300 0.0172 58   

 

 

Figure 5.4: Bar chart showing how accuracy or precision varies with Edit Distance. The data 

for the visualization was captured from Table 5.9. 

The computer utilized for the experiments was equipped with an Intel® i5-8250U Processor 

and operated on a 64-bit Windows 10 Ultimate Operating System. 

5.7 Discussion of Results   

Based on experimental findings, SwaDetect achieves an impressive accuracy rate of 99.7% this 

mean that it correctly detects and highlights 99.7% of the spelling errors in the text it examines. 

 

The Precision of 99.5 for SwaDetect means that when it flags a word or phrase as a potential 

spelling error, it is correct 99.5% of the time, in other words, out of all the items the spellchecker 

identifies as errors, only 0.5% of them are actually not errors (false positives). 

 

The Recall of 100% or detection means that it correctly identifies every single spelling error in 

the text without missing any. In other words, it captures and flags all spelling mistakes in the 

text, ensuring that nothing goes unnoticed. 
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In reference to Table 5.3 we observe that when the size of the Dataset is the same, Speed of 

Detection (FD) is also the same. However, from Figure 5.2 we observe that size is inversely 

proportional to FD. this concept is consonant with that deduced by Balagadde and Premchand,  

(Balagadde and Premchand, 2016 b) 

 

The average FD of 65Hz derived from Table 5.4 means that SwaDectect can detect errors in 65 

words in one second which is good enough for interactive detection, given that the minimal 

speed of 10 Hz is required for interactive correction, (Peter Norvig, 2007). 

 

In reference to Table 5.8, we observe that average Accuracy(AP) or Precision (PP) of 

SwaCorrect is 82% which means that it can successfully correct 82% of non-word errors that 

are ED1 through ED3 from their target (Correct word). We can also deduce that AP is inversely 

proportional to ED that is when ED increases AP falls. This concept is visualized in Figure 5.3. 

  

 In reference to Table 5.9, we note that the average speed of correct (FC) is 58 Hz which is far 

above 10 Hz that is the minimum requirement for interactive correction as stipulated by Norvig 

(Peter Norvig, 2007). This means that SwaCorrect can provide correction for 53 erroneous 

words per second. It is worthwhile noting from Figure 5.4 that FC falls when ED increases 

which emphasises the inverse proportionality between the two entities. This concept is 

consonant with that deduced by Balagadde and Premchand, (Balagadde and Premchand, 2016 

a) 

  

We can deduce that the FD and FC depend on the speed of  the computer processor used. The 

faster the processor, the bigger FD and FC are.  

 

 

  5.8   Comparison with Other Systems  

Table 5.10: SwaDetect compared to other Detection Systems 
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 Accuracy in 

percentage 

Speed of 

Detection (HZ) 

Detection 

Technique 

SwaDetect 99.6 85 Direct DLT 

Jambo Spell Checker  

(KILINUX, 2004) 

Not Specified Not Specified Direct DLT 

LugDetect (Balagadde and 

Premchand, 2016  b) 

100 1474 Multi DLT 

Aspell.31 (Atkinson, 2006) 

English Detector  

93.1 137 DLT and 

other 

approaches 

 

AKHAR (Punjabi Detector) 

(Kaur and K. Garg, 2014) 

 

83.5% Not Known Direct DLT 

 

Table 5.11: SwaCorrect compared to others Correction Systems 

 Accuracy 

in 

percentage 

Precision 

in 

percentage 

Speed of 

Correction 

(HZ) 

Correction 

Technique 

SwaCorrect 85 85 58 Jaccard 

Coefficient 

Technique 

Jambo Spell Checker 

(KILINUX, 2004) 

Not 

Specified 

Not 

Specified 

Not 

Specified 

Edit 

Distance 

Technique 

Kîmîîrû_Spellchecker 

(Anondo, 2013) 

80 100 Not 

Specified 

Hunspell 

language 

tools  

Gĩkũyũ_Spellchecker 

(Ng'ang'a and 

WKamau, 2010) 

75 82 Not 

Specified 

Hunspell 

language 

tools  
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LugCorrect 

(Balagadde and 

Premchand, 2016  a) 

98 Not 

Specified 

1365 

 

Jaccard 

Coefficient 

Technique  

 

In reference to Table 5.10, SwaDetect produced a better result than most of the detection 

systems considered in this research work namely, Jambo Spell Checker, Aspell.31, and 

AKHAR, apart from LugDetects which uses Multi DLT. 

 

 In reference to 5.11, SwaCorrect outperform all the corrector consider in this work apart  from  

LugCorrect. The exceptional accuracy of LugCorrect can be attributed to the incorporation of 

a big Correct Candidate List (CCL) which has 10 candidates. The underlying rationale for this 

is that the likelihood of the target word being present in a CCL increases with the number of 

elements in the list. We plan to implement a similar approach in our future work. 
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6 CHAPTER SIX: CONCLUSION AND FUTURE WORK. 

6.1 Conclusion   

This research work has introduced models for addressing non-word error detection and 

correction in Kiswahili, a Bantu language, resulting in the development of SwaSpell 

comprising  of SwaDetect and SwaCorrect. 

Experimental results demonstrate that SwaDetect achieves a detection accuracy of 99.6% 

operating at an average speed of 65 Hz (words per second). This surpasses the minimal 

speed requirement of 10 Hz for interactive correction. It is noteworthy that the speed of 

detection is inversely proportional to the lexicon size. 

In reference to SwaCorrect, experimental results indicate that it can correct erroneous words 

with edit distances of one (ED1) through three (ED3) from the target (correct version of the 

word) with an average accuracy (Av) of 85% operating at a processing speed of 58 Hz, 

equivalent to 58 words per second. Experimental results demonstrate that accuracy of 

correction is inversely proportional to edit distance. 

6.2 Future work   

SwaSpell's current scope is limited to non-word errors, however, this can be extended to 

encompass real word errors. Several approaches exist for addressing real-word errors, most 

of which employ statistical methods. For Kiswahili, the approach proposed by Mays et al. 

( Mays et al.), which utilizes word-trigram probabilities for detecting and correcting real 

word errors, is one option. Another approach, presented by Kernighan et al. (Kernighan et 

al), is a real-word error detector based on a noisy channel model. Additionally, Word Sense 

Disambiguation (WSD) algorithms can be employed to correct real word errors in context 

by leveraging sentence context to resolve semantic ambiguity. 

Therefore, further investigation is needed to determine the most suitable approach for the 

highly inflected Kiswahili language among the mentioned alternatives. Moreover, 

exploring language and error models, such as statistical selection models for correction 

candidate selection, may enhance the performance of SwaCorrect.  
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