Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ekpa, Theophilus Kesaap-Oloom"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Design and analysis of wireless nanogrid for non-smartphones
    (Kampala International University , School of Engineering and Applied Science, 2018-04) Ekpa, Theophilus Kesaap-Oloom
    This research work designs a wireless power transfer system (WPT) for non smart phones as an alternative to existing wired power supply systems for these devices. Initially, the general concept of known WPT systems and methods are introduced and reviewed. It was noted that most existing WPT models do not consider external interferences in their design even though, it is well known that high frequency circuits may interfere with a WPT system. Additionally till date, existing WPT systems are designed for smart devices only. To ll in this gap, a basic magnetic induction WPT architecture was developed. It consisted of an input driver, inductively coupled transmitter and receiver and a load driver where the load is a non-smartphone. In each stage of the architecture, the e ciencies j􀀀k of the power transfer process are calculated. The inductive coupling is represented by a magnetic circuit in which ex-ternal interferences are modeled as series reluctances. The power ows and e ciency were obtained by Langrangian energy methods. The exibility of the design was demonstrated by the low order of variation in the system e ciency over generalized coordinates of load rotation, displacement and impedance. Comparing the WPT sys- tem designed in this work with [9], a maximum parameter variation over rotation of 1% was obtained. Additionally, an e ective range of 4.5m where [9] had a variation over rotation of 6% and a range of 1m. Finally, the research work recommended that a speci c design incorporating a solar photovoltaic source is introduced to improve the stability and reliability of the wireless power supply system.

KIU INSTITUTIONAL REPOSITORY copyright © 2002-2025

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback