Anemia, iron, and HIV: decoding the interconnected pathways A review

Abstract
This review delves into the intricate relationship between anemia, iron metabolism, and human immunodeficiency virus (HIV), aiming to unravel the interconnected pathways that contribute to the complex interplay between these 3 entities. A systematic exploration of relevant literature was conducted, encompassing studies examining the association between anemia, iron status, and HIV infection. Both clinical and preclinical investigations were analyzed to elucidate the underlying mechanisms linking these components. Chronic inflammation, a hallmark of HIV infection, disrupts iron homeostasis, impacting erythropoiesis and contributing to anemia. Direct viral effects on bone marrow function further compound red blood cell deficiencies. Antiretroviral therapy, while essential for managing HIV, introduces potential complications, including medication-induced anemia. Dysregulation of iron levels in different tissues adds complexity to the intricate network of interactions. Effective management of anemia in HIV necessitates a multifaceted approach. Optimization of antiretroviral therapy, treatment of opportunistic infections, and targeted nutritional interventions, including iron supplementation, are integral components. However, challenges persist in understanding the specific molecular mechanisms governing these interconnected pathways. Decoding the interconnected pathways of anemia, iron metabolism, and HIV is imperative for enhancing the holistic care of individuals with HIV/AIDS. A nuanced understanding of these relationships will inform the development of more precise interventions, optimizing the management of anemia in this population. Future research endeavors should focus on elucidating the intricate molecular mechanisms, paving the way for innovative therapeutic strategies in the context of HIV-associated anemia.
Description
Keywords
Citation
Collections